

AIC1703B

Ultralow Quiescent, Fast Transient Low Dropout Regulator DESCRIPTION

FEATURES

- Low Quiescent Current: 1.6µA
- High Input Voltage: Up to 35V
- High Output current: 200mA
- Without Overshot in Start Up
- Without Overshot after Short Circuits Removed
- Low Dropout Voltage: 280mV@100mA, 580mV@200mA
- Fixed Output Voltages: 3.3 and 5.0V
- High-accuracy Output Voltage: ±2%
- Good Transient Response
- Low Temperature Drift: ±100ppm/°C
- Integrated Short-Circuit Protection
- Integrated Thermal Protection
- Available Packages : SOT23-3

APPLICATIONS

- Battery-powered equipment
- Portable equipment
- Audio/Video equipment

TYPICAL APPLICATION CIRCUIT

AIC1703B Typical Application Circuit

The AIC1703B series is a high voltage, ultralowpower, low dropout voltage regulator. The device can deliver 100mA output current with a dropout voltage of 300mV and allows an input voltage as high as 35V. The typical quiescent current is only 1.6µA. The device is available in fixed output voltages of 3.3 and 5.0V. The device features integrated short-circuit and thermal shutdown protection.

Although designed primarily as fixed voltage regulators, the device can be used with external components to obtain variable voltages.

<u>(I)</u> aic_

ORDERING INFORMATION

Example: AIC1703B-33GU3TR

→ 3.3V Version, in Green SOT23-3 Package and Tape & Reel Packing Type

• Marking

Part No	Marking
AIC1703B-XXGU3	53XXB

(XX: output voltage (33=3.3V, 50=5.0V); B: output accuracy ±2%)

ABSOLUTE MAXIMUM RATINGS

VIN Pin to GND Pin Voltage		0.3V to 35V
VOUT Pin to GND Pin Voltage		-0.3V to 6V
VOUT Pin to VIN Pin Voltage		35V to +0.3V
Peak Output Current		Internally Limited
Storage Temperature Range		40°C~150°C
Lead Temperature (Soldering, 10 sec)		
Operating Virtual Junction Temperature		150°C
Operating Ambient Temperature Range		40°C~85°C
Thermal Resistance Junction to Ambient, θ_{JA}	SOT23-3	400°C/W
Power Dissipation, P _D (Assume no Ambient Airflow, no Heatsink)	SOT23-3	0.25W

Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

ELECTRICAL CHARACTERISTICS

(T_A=25°C, C_{IN}=1µF, V_{IN}=V_{OUTNOM}+1.0V, C_{OUT}=10µF, unless otherwise specified) (Note 1)

			-		-	
PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input Voltage		V _{IN}			35	V
Quiescent Current	No Load	I _{GND}		1.6	2.0	μA
Output Voltage	I _{OUT} =10mA	V _{OUT}	V _{OUTNOM} * 0.98	V _{OUTNOM}	V _{OUTNOM} * 1.02	V
Output Current		I _{OUT_MAX}	200	250		mA
Dropout Voltage (Note 2)	AIC1703B-50, Ι _{ΟυΤ} =100mA, ΔV _{ΟυΤ} = -V _{ΟυΤΝΟΜ} *2%	V _{DROP}		280	350	mV
	AIC1703B-50, Ι _{ΟUT} =200mA, ΔV _{OUT} = -V _{OUTNOM} *2%			580	700	
	AIC1703B-33, I _{OUT} =100mA, ΔV _{OUT} = -V _{OUTNOM} *2%			300	380	
	AIC1703B-33, I _{OUT} =200mA, ΔV _{OUT} = -V _{OUTNOM} *2%			600	750	
Load Regulation	1mA ≤ I _{OUT} ≤ 100mA	ΔV_{OUT}		20	50	mV
Line Regulation	I _{OUT} = 1mA, V _{IN} =(V _{OUTNOM} +1V) to 35V	ΔV_{OUT} *100 / ΔV_{IN} *V _{OUT}			0.2	%/V
Current Limit	V _{IN} =(V _{OUTNOM} +1V) to 35V, R _{LOAD} =V _{OUTNOM} /1A	I _{LIMIT}		450		mA
Thermal Shutdown Threshold		T _{SHDN}		125		°C

Note 1. Specifications are production tested at T_A=25°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC).

Note 2. Dropout Voltage is the voltage difference between the input and the output at which the output voltage drops 2% below its nominal value.

TYPICAL PERFORMANCE CHARACTERISTICS

İC

9

Fig. 3 Load Transient Response

Fig. 5 Short-Circuit Occurred

Fig. 6 Short-Circuit Removed

Functional Block Diagram of AIC1703B

PIN DESCRIPTION

- VIN Regulator input supply pin.
- GND Ground pin.
- VOUT Regulator output pin.

APPLICATION INFORMATION

Power Dissipation

The power dissipated by the p-channel MOSFET $P_{D(MOSFET)}=(V_{IN}-V_{OUT})*I_{OUT}$ Total Power Dissipation

 $\mathsf{P}_{\mathsf{D}(\mathsf{TOTAL})}{=}\mathsf{P}_{\mathsf{D}(\mathsf{MOSFET})}{+}\mathsf{V}_{\mathsf{IN}}{*}\mathsf{I}_{\mathsf{GND}}$

The quiescent current I_{GND} is only $1.6\mu A$, so that $V_{IN}*I_{GND}$ can be ignored. The maximum power dissipation can be estimated by

 $P_{D(max)} = [V_{IN(max)} - V_{OUT(min)}]^* I_{OUT}$

Junction Temperature

 $T_J = P_{D(max)}^* \theta_{JA} + T_A$

 θ_{JA} is thermal resistance of junction to ambient, T_A is the ambient temperature.

APPLICATION EXAMPLES

) aic

Fig. 7 Application Circuit for Increasing Output Voltage

Fig. 8 Application Circuit for Increasing Output Voltage

PHYSICAL DIMENSIONS

SOT23-3

Note: 1. Refer to JEDEC MO-178.

- 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side.
- 3. Dimension "E1" does not include inter-lead flash or protrusions.
- 4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

s v	SOT23-3			
M B	MILLIMETERS			
0 L	MIN.	MAX.		
А	0.95	1.45		
A1	0.00	0.15		
A2	0.90	1.30		
b	0.30	0.50		
с	0.08	0.22		
D	2.80	3.00		
Е	2.60	3.00		
E1	1.50	1.70		
е	0.95 BSC			
e1	1.90 BSC			
L	0.30	0.60		
L1	0.60 REF			
θ	0°	8°		

Note:

Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.