

DDR Termination Regulator

FEATURES

AVIN Input Voltage Range: 2.375V to 5.5V

PVIN Input Voltage Range: 1.1V to AVIN

• 2A Source and Sink Current Capability

 Support DDR / DDRII / DDRIII/ Low Power DDRIII / DDRIV Requirements

• Low Output Voltage Offset, ±20mV

· High Accuracy Output Voltage at Full-Load

• Stable with 22µF Ceramic Output Capacitor

Low External Component Count

• No External Resistor Required

· Built in Soft Start, UVLO and OCP Protection

• Thermal Shutdown Protection

• SOP-8 Exposed Pad Package

· RoHS Compliant and Green Package

APPLICATIONS

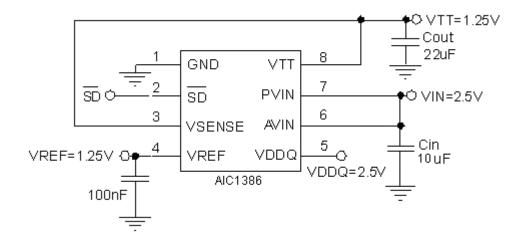
· Desktop PCs, Notebooks and Workstations

· Graphic Cards

• Set Top Boxes, Digital TVs, Printers

DDR/II/III Termination Voltage Supply

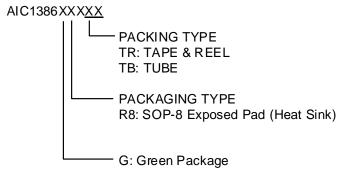
DESCRIPTION

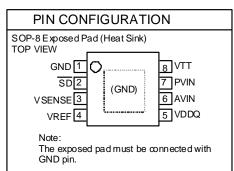

AlC1386 linear regulator is designed to achieve 2A source and sink current for termination of. DDR / DDRII / DDRIII while regulating an output voltage to within ± 20 mV. And it can deliver 1.5A continue current for termination of DDRIV.

AIC1386 converts voltage supplies range from 1.1V to 5.5V into an output voltage that adjusts by two external voltage divider resistors. It provides an excellent voltage source for active termination schemes of high-speed transmission lines as those seen in double data rate (DDR) memory system, and it meets the JEDEC SSTL-2 and SSTL-18 or other specific interfaces such as HSTL, SCSI-1 and SCSI-3 specifications for termination of DDR-SRAM.

Built-in current limiting in source and sink mode, on-chip thermal shutdown protection to against fault conditions.

The AIC1386 is available in the SOP-8 with exposed pad package


■ TYPICAL APPLICATION CIRCUIT



1

ORDERING INFORMATION

Example: AIC1386GR8TR

→ In Green SOP-8 Exposed Pad (Heat Sink)Package & Taping & Reel Packing

■ ABSOLUTE MAXIMUM RATINGS

PVIN, AVIN, VDDQ, $\overline{\text{SD}}$, VSENSE, VREF, VTT, to	o GND0.3V to 6V
Operating Temperature Range	-40°C ~ 85°C
Junction Temperature	150°C
Storage Temperature Range	- 65°C ~ 150°C
Lead Temperature (Soldering. 10 sec)	260°C
Thermal Resistance Junction to Ambient, $R\theta_{JA}$	SOP-8 Exposed Pad (Heat Sink)* 60°C /W
Thermal Resistance Junction to Case, $R\theta_{\text{JC}}$	SOP-8 Exposed Pad (Heat Sink) * 16°C /W
(Assume no Ambient Airflow)	

Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

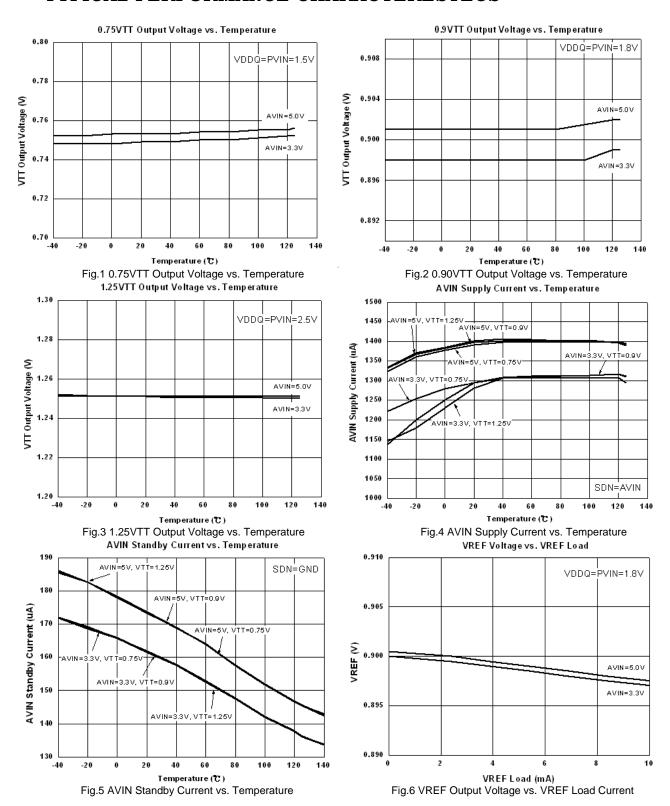
^{*}The package is place on a two layers PCB with 2 ounces copper and 2 square inch, connected by 8 vias.

■ ELECTRICAL CHARACTERISTICS

(AVIN=5V, PVIN=VDDQ=1.8V, VREF=0.5VDDQ, T_A=25°C, unless otherwise specified) (Note 1)

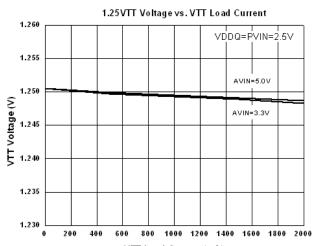
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS
SUPPLY VOLTAGE			•	-		•
		AVIN	2.375		5.5	V
Input Voltage Range		PVIN	1.1		AVIN	V
		VDDQ	1.1		PVIN	V
SUPPLY CURRENT			I			
AVIN Supply Current	AVIN=5V, IOUT = 0A	I _{Q-AVIN}	0.3	1	2	mA
A) (()) () () ()	AVIN=5V, SDN= 0V, VREF> 0.39V	I _{STBY-AVIN}		60		μA
AVIN Standby Current	AVIN=5V, SDN= 0V, VREF< 0.39V	IREFUVLO-AVIN		30		μA
VDDQ Quiescent Current	AVIN=5V, SDN= 0V, VREF< 0.39V	I _{Q-VDDQ}		10		μA
	AVIN=5V, SDN= 0V, VREF> 0.39V	I _{STBY-PVIN}		2	90	μA
•	AVIN=5V, SDN= 0V, VREF< 0.39V	I _{SD-PVIN}		2	90	μΑ
VTT OUTPUT		T	1		ı	1
	PVIN=VDDQ=2.5V	VTT		1.25		
VTT Output Voltage	PVIN=VDDQ=1.8V			0.9		V
	PVIN=VDDQ=1.5V			0.75		
VTT Output Offset	Iout = 0A	Vos_VTT	-20		20	mV
VTT Load Regulation	I _{OUT} =0.1mA ~ +2A	ΔV_{LOR}	-20		20	mV
VII Load (Cegalation	I _{OUT} =0.1mA ~ -2A		-20		20	1117
VTT Current Limit	Source/Sink current	I _{LIM}	2.4	3		Α
VTT Discharge Current	$V_{REF}=0V$, $V_{OUT}=0.3V$	I _{DSCHG}	12	17		mA
V _{SENSE} Input Current		I _{VSENSE}		13		nA
VREF OUTPUT						
	PVIN=VDDQ=2.5V	VREF		1.25		
VREF Output Voltage	PVIN=VDDQ=1.8V			0.9		V
	PVIN=VDDQ=1.5V			0.75		
VREF Output Voltage	PVIN=VDDQ=2.5V, IVREF = 10mA	VREFTOL	-20		20	mV
Tolerance to VDDQ/2	PVIN=VDDQ=1.8V, IVREF = 10mA	VREFTOL	-18		18	mV
·	PVIN=VDDQ=1.5V, IVREF = 10mA	VREFTOL	-15		15	mV
LOGIC THRESHOLD			1	•	r	
Shutdown Threshold	Output ON	V _{IH}	1.6			V
	Output OFF	V_{IL}			0.3	
THERMAL SHUTDOWN		1	ı	1	Г	
Thermal Shutdown Tem-		T _{SD}		160		
perature Thornal Chutdown Use		35				°C
Thermal Shutdown Hysteresis				30		

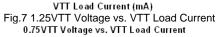
Note1: Specifications are production tested at $T_A=25$ °C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC).


Note 2: V_{OS} is the voltage measurement, which is defined as V_{TT} subtracted $V_{REF.}$

Note 3: Load regulation is measured at constant junction temperature, using pulse testing with a low ON time.

Note 4: Current limit is measured by pulse load.




■ TYPICAL PERFORMANCE CHARACTERESTECS

■ TYPICAL PERFORMANCE CHARACTERESTECS (Continued)

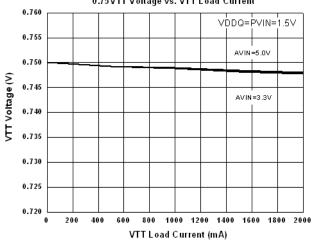


Fig.9 0.75VTT Voltage vs. VTT Load Current

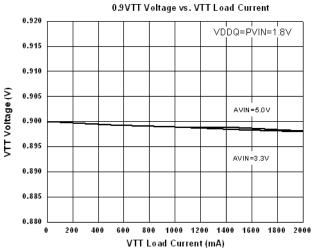
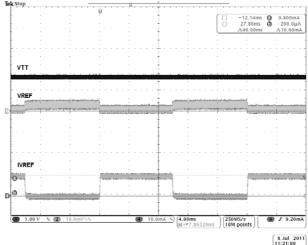



Fig.8 0.9VTT Voltage vs. VTT Load Current

■ TYPICAL PERFORMANCE CHARACTERESTECS (Continued)

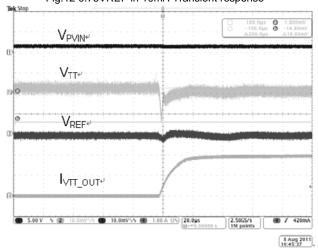


Fig.14 0.75VTT in 2A Transient respons

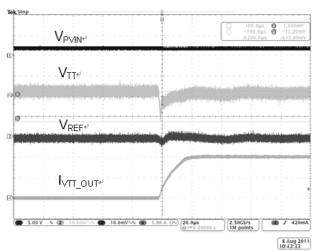
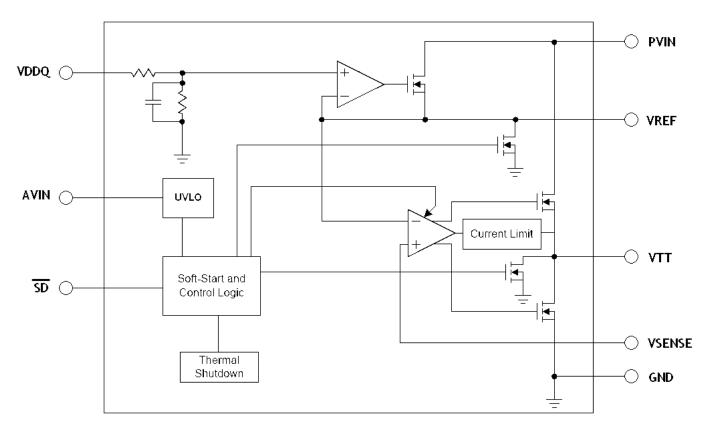



Fig.13 0.9VTT in 2A Transient respons

BLOCK DIAGRAM

AIC1386

■ PIN DESCRIPTION

Pin 1: GND	- Ground.
------------	-----------

Pin 2: SD - Active low shutdown pin.

Pin 3: V_{SENSE} - Sense V_{TT} to improve load regulation.

 $\begin{array}{ccccc} \mbox{Pin 4: V}_{\mbox{\scriptsize REF}} & \mbox{- Buffered} & \mbox{output} & \mbox{of} & \mbox{internal} \\ & \mbox{reference} & \mbox{voltage,} & \mbox{equal} & \mbox{to} \end{array}$

VDDQ/2.

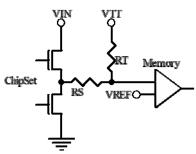
Pin 5: VDDQ - Input voltage to internal reference voltage for regulating $V_{\text{TT}}.$

Pin 6: AVIN - Analog input voltage to supply internal control circuitry.

Pin 7: PVIN - Power input voltage to supply the rail voltage exclusively for the output stage used to create

 V_{TT} .

Pin 8: V_{TT} - Regulated output, equal to VDDQ/2.


Heat Sink - Recommended to Connect to GND.

APPLICATION INFORMATION

The AIC1386 linear termination regulator is designed to meet JEDEC requirements of DDR-SDRAM (DDR I / II / III). The V_{TT} is able to deliver sinking and sourcing current while regulating the voltage equal to VDDQ/2. The output stage includes a sense function to maintain excellent load regulation to prevent shoot through. The power part has two distinct rails that split the internal analog circuitry from power output stage, which results in reducing internal power disspation.

Series Stub Termination Logic (SSTL) was created to improve signal integrity of the data transmission across the memory bus. This termination scheme is necessary to prevent data error from signal reflections while transmitting at high frequencies encountered with DDR-SDRAM. The achievement of single parallel termination can be seen as below figure.

Between the chipset and memory are one RS series resistor and one RT termination resistor. Both RS and RT are 25 Ohms typically; they can be altered to scale the current requirements from the AIC1386.

AVIN and PVIN

AVIN and PVIN have the ability to work with separate supplies depending on the application. Higher PVIN will increase the maximum continuous output current resulting from output $R_{\text{DS-ON}}$ limitations at voltages close to V_{TT} . Oppositely, the internal power dissipation will also increase at high PVIN. Connect AVIN and PVIN together with 2.5V is a good compromise in

SSTL-2 applications. This reduces the need for bypassing two supply pins separately. For the safe operation of the system; AVIN must always exceed or equal to PVIN.

VDDQ

VDDQ is used to make internal reference voltage for regulating V_{TT} . And V_{TT} will track VDDQ/2 precisely because of internal resistor divider. For SSTL-2 application, connect VDDQ to the 2.5V rail directly at the DIMM instead of AVIN and PVIN to achieve that reference voltage tracks the DDR memory rails accurately without a voltage drop from power lines.

VSENSE

The sense pin is used to improve remote load regulation. The termination resistors in most motherboards connect to V_{TT} with a long trace that will cause a significant voltage drop. The V_{SENSE} pin can improve that a lower termination voltage at one end of the bus than the other by connecting it to the middle of the bus. If a long V_{SENSE} trace is implemented close to the memory, noise pickup can be a problem in precise regulation of V_{TT} . A small $0.1\mu F$ ceramic capacitor can be used for filtering noise. V_{SENSE} pin must still tie to V_{TT} if remote load regulation is not used. V_{RFF}

 V_{REF} provides the buffered output of the internal VDDQ/2 reference voltage. It can be used to support the reference voltage for the Northbridge chipset and memory. The V_{REF} remains active during the shutdown state and thermal shutdown for the Suspend to RAM functionality. A bypass capacitor, located close to the V_{REF} pin, can be used to improve performance. Ranging from $0.01\mu F$ to $0.1\mu F$ of ceramic capacitor is recommended.

V_{TT}

 V_{TT} is the regulated output that is used to terminate the bus resistor, which obtains the ability of sinking and sourcing current while regulating the output accurately to VDDQ/2. The AIC1386 is designed to deliver up to $\pm 2A$ peak

transient currents with excellent transient response. The output capacitor should be large enough to prevent an excessive voltage drop if a transient is expected to last above the maximum continuous current rating for a significant amount of time. AIC1386 is able to provide large transient output currents, yet it can't handle for long durations under all conditions that results from the standard packages are not able to dissipate the heat of the internal power loss. If large currents are required for longer durations, ensure that the maximum junction temperature is not exceeded.

Capacitor Selection

The input capacitor of AIC1386 is required for improved performance during large load transients to prevent the input rail from dropping. $47\mu F$ aluminum electrolytic capacitors or ceramic capacitor is recommended. If AVIN and PVIN are separated, the $47\mu F$ capacitor should be placed as close as possible to the PVIN. And AVIN can bypass a 0.1 μF ceramic capacitor to prevent excessive noise.

 $220\mu F$ aluminum electrolytic capacitor is a recommendation for output capacitor to improve load transient response of V_{TT} . And size above $22\mu F$ ceramic output capacitor is allowed to general used for obtain small profile. The value of ESR is determined by the acceptable maximum current spike and the output voltage droops.

Thermal Dissipation

The AIC1386 has a thermal-limiting circuitry, which is designed to protect the device against overload For continuous load condition. condition, maximum rating of junction temperature must not be exceeded. It is important to pay more attention in thermal resistance. It includes junction to case, junction to ambient. The maximum power dissipation of AIC1386 depends on the thermal resistance of its case and circuit board, the temperature difference between the die junction and ambient air, and the rate of airflow. The thermal resistance is greatly affected by the package used, the number of vias, the speed of airflow and the thickness of copper. When the IC

mounting with good thermal conductivity is used, the junction temperature will be low even when large power dissipation applies. So the PCB mounting pad for GND pin of AIC1386 should provide maximum thermal conductivity to maintain low device temperature.

The power dissipation across the device is

$$P = I_{OUT} (V_{IN}-V_{OUT}).$$

The maximum power dissipation is:

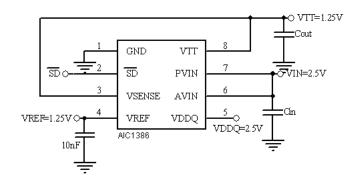
$$P_{MAX} = \frac{(T_{J\text{-max}} - T_{A})}{R\theta_{JA}}$$

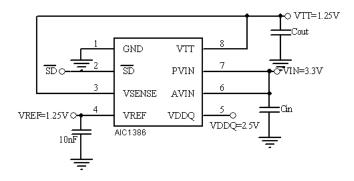
Where T_{J-max} is the maximum allowable junction temperature (125°C), and T_A is the ambient temperature suitable in application.

Low VCTNL Applications

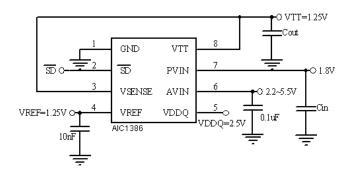
AIC1386 can be used in an application system where either a 2.5V, 3.3V or 5.0V rail is available. The VCTNL minimum input voltage requirement is 2.375V. If a 2.5V rail is used, the maximum continuous Source and Sink Current is 1.5A.

Layout Considerations

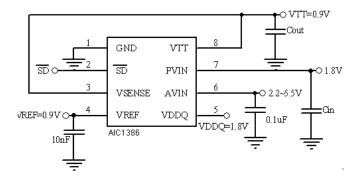

- Minimize high current ground loops. Place the ground of the device, the input capacitor, and the output capacitor together with short and wide connection.
- Connect the bottom-side pad (available in SOP-8 Exposed Pad) to a large ground plane. Use as much copper as possible to decrease the thermal resistance of the device.
- A buried layer may be used as a heat spreader if the large copper around the device is not available. Use vias to lead the heat into the buried layer.
- The input capacitor should be placed as close as possible to the PVIN pin.
- A bypass capacitor, located close to the V_{REF} pin, can be used to improve performance. Ranging from 0.01μF to 0.1μF of ceramic capacitor is recommended.
- If long sense traces is used, the noise of V_{SENSE} trace may occurs which from switching I/O signals. A 0.1uF ceramic capacitor connects to the V_{SENSE} pin can be used to filter high frequency signal.

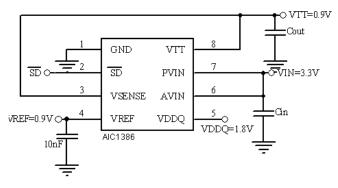

DDR Termination Regulator

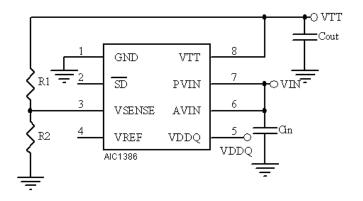
APPLICATION EXAMPLES


DDR I Application

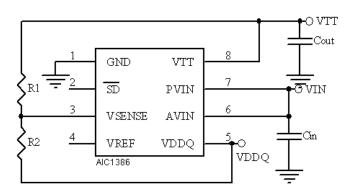
All the input rails connect to 2.5V rail is recommend for the SSTL-2 termination scheme application. The circuitry completes an optimal power dissipation and component count.


Connect the AIC1386 power rail to 3.3V to provide the maximum continuous output current if 1.8V and 2.5V rail are not available. Beware the junction temperature to exceed the maximum due to large current level. In this configuration AVIN will be limited to operation on the 3.3V or 5V rail results from PVIN can never exceed AVIN.


AVIN and PVIN have the ability to work with separate supplies. PVIN can be operated on a lower 1.8V rail and the AVIN can be connected to a higher rail. Although this circuitry can obtain better efficiency, but the maximum continuous current is reduced due to the lower rail voltage. Increasing the output capacitance can also help for large load transients.



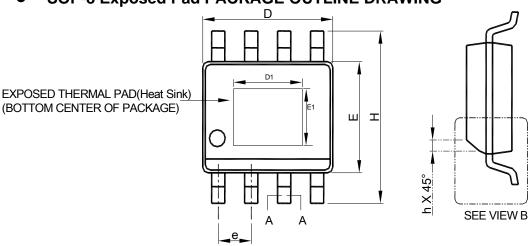
The circuit is recommended for DDR-II applications. The output stage is connected to the 1.8V rail and the AVIN pin can be connected to either a 3.3V or 5V rail.

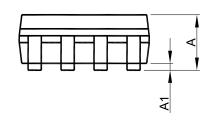

Connect the power rail to 3.3V to provide a higher continuous output current if 1.8V rail is not available. Careful with the junction temperature that may exceed the maximum due to the thermal dissipation increases with lower V_{TT} output voltages. In this configuration PVIN will be limited to operation on the 3.3V rail.

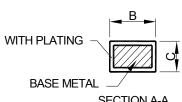
Level Shifting Application

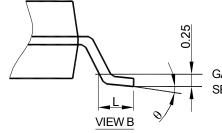
The AIC1386 is available to scale the output to any voltage required. One method is to level shift the output above the internal reference voltage of VDDQ/2 by using two resistors from the V_{TT} to the V_{SENSE} . The correct voltage at VTT is

$$V_{TT} = VDDQ/2 (1 + R1/R2)$$


Another method is to level shift the output below the internal reference voltage of VDDQ/2 by using two resistors from the V_{SENSE} and VDDQ. The correct voltage at V_{TT} is


$$V_{TT} = VDDQ/2 (1 - R1/R2)$$




PHYSICAL DIMENSIONS (unit: mm)

• SOP-8 Exposed Pad PACKAGE OUTLINE DRAWING

SECTION A-A

GAUGE PLANE
SEATING PLANE

Note: 1. Refer to JEDEC MS-012E.

- 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.
- 3. Dimension "E" does not include inter-lead flash or protrusions.
- 4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

S Y M	SOP-8 Exposed Pad(Heat Sink)			
M B	MILLIMETERS			
B O L	MIN.	MAX.		
Α	1.35	1.75		
A1	0.00	0.15		
В	0.31	0.51		
С	0.17	0.25		
D	4.80	5.00		
D1	1.50	3.50		
Е	3.80	4.00		
E1	1.0	2.55		
е	1.27 BSC			
Н	5.80	6.20		
h	0.25	0.50		
L	0.40	1.27		
θ	0°	8°		

Note:

Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.