

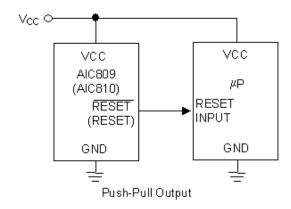
# **3-Pin Microprocessor Reset Circuits**

#### FEATURES

- Ultra Low Supply Current 1μA(typ.)
- Guaranteed Reset Valid to Vcc=0.9V
- Available in Three Output Type: Open-Drain Active Low (AIC809N), Push-Pull Active Low (AIC809), Push-Pull Active High (AIC810)
- 140ms Min. Power-On Reset Pulse Width
- Internally Fixed Threshold 2.3V, 2.6V, 2.9V, 3.1V, 4.0V, 4.2V, 4.4V, 4.6V
- Tight Voltage Threshold Tolerance: 1.5%
- Tiny Package in SOT23-3

#### APPLICATIONS

- Notebook Computers
- Digital Still Cameras
- PDAs
- Critical Microprocessor Monitoring


#### DESCRIPTION

AIC809/AIC810 are low-power microprocessor ( $\mu P$ ) supervisory circuits used to monitor power supplies in  $\mu P$  and digital systems. They provide applications with benefits of circuit reliability and low cost by eliminating external components.

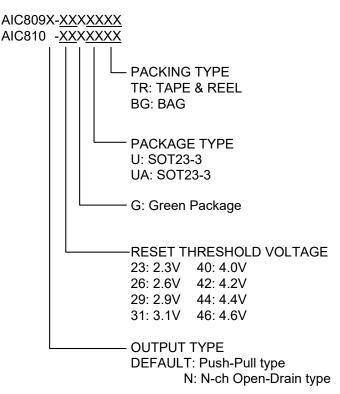
These devices perform as valid signals in applications with Vcc ranging from 6.0V down to 0.9V. The reset signal lasts for a minimum period of 140ms whenever VCC supply voltage falls below preset threshold. Both AlC809 and AlC810 were designed with a reset comparator to help identify invalid signals, which last less than 140ms. The only difference between them is that they have an active-low RESET output and active-high RESET output, respectively.

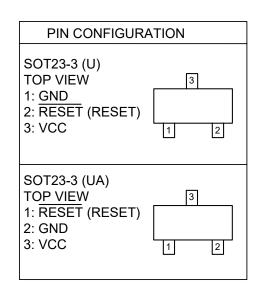
Low supply current (1 $\mu$ A) makes AlC809/AlC810 ideal for portable equipment. The devices are available in SOT23-3 package.

## ■ TYPICAL APPLICATION CIRCUIT



**Analog Integrations Corporation** 


Si-Soft Research Center


DS-809G-02 20240219

1



#### ORDERING INFORMATION





(Additional voltage versions with a unit of 0.1V within the voltage range from 1.5V to 5.5V for this product line may be available on demand with prior consultation with AIC.)

Example: AIC809-31GUTR

→ 3.1V and push-pull version, in SOT23-3 Green Package & Tape & Reel Packing

Type

### SOT23-3 Marking

| Part No.    | Marking |
|-------------|---------|
| AIC809-23GU | RA23G   |
| AIC809-26GU | RA26G   |
| AIC809-29GU | RA29G   |
| AIC809-31GU | RA31G   |
| AIC809-40GU | RA40G   |
| AIC809-42GU | RA42G   |
| AIC809-44GU | RA44G   |
| AIC809-46GU | RA46G   |

| Part No.     | Marking |
|--------------|---------|
| Part No.     | Warking |
| AIC809N-23GU | RB23G   |
| AIC809N-26GU | RB26G   |
| AIC809N-29GU | RB29G   |
| AIC809N-31GU | RB31G   |
| AIC809N-40GU | RB40G   |
| AIC809N-42GU | RB42G   |
| AIC809N-44GU | RB44G   |
| AIC809N-46GU | RB46G   |

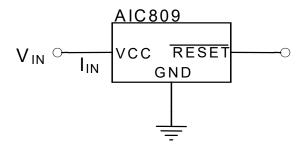
| Part No.    | Marking |
|-------------|---------|
| AIC810-23GU | RD23G   |
| AIC810-26GU | RD26G   |
| AIC810-29GU | RD29G   |
| AIC810-31GU | RD31G   |
| AIC810-40GU | RD40G   |
| AIC810-42GU | RD42G   |
| AIC810-44GU | RD44G   |
| AIC810-46GU | RD46G   |



## • SOT23-3 Marking (continued)

| Part No.     | Marking |
|--------------|---------|
| AIC809-23GUA | RC23G   |
| AIC809-26GUA | RC26G   |
| AIC809-29GUA | RC29G   |
| AIC809-31GUA | RC31G   |
| AIC809-40GUA | RC40G   |
| AIC809-42GUA | RC42G   |
| AIC809-44GUA | RC44G   |
| AIC809-46GUA | RC46G   |

| Part No.      | Marking |
|---------------|---------|
| AIC809N-23GUA | RE23G   |
| AIC809N-26GUA | RE26G   |
| AIC809N-29GUA | RE29G   |
| AIC809N-31GUA | RE31G   |
| AIC809N-40GUA | RE40G   |
| AIC809N-42GUA | RE42G   |
| AIC809N-44GUA | RE44G   |
| AIC809N-46GUA | RE46G   |


| Part No.     | Marking |
|--------------|---------|
| AIC810-23GUA | RF23G   |
| AIC810-26GUA | RF26G   |
| AIC810-29GUA | RF29G   |
| AIC810-31GUA | RF31G   |
| AIC810-40GUA | RF40G   |
| AIC810-42GUA | RF42G   |
| AIC810-44GUA | RF44G   |
| AIC810-46GUA | RF46G   |

## ■ ABSOLUTE MAXIMUM RATINGS

| V <sub>CC</sub>                                       | -0.3V ~6.5V   |
|-------------------------------------------------------|---------------|
| RESET, RESET                                          |               |
| Input Current (V <sub>CC</sub> )                      |               |
| Output Current (RESET or RESET )                      |               |
| Continuous Power Dissipation (T <sub>A</sub> = +70°C) | 320mW         |
| Operating Junction Temperature Range                  | -40°C ~ 85°C  |
| Junction Temperature                                  | 125°C         |
| Storage Temperature Range                             | -65°C ~ 150°C |
| Lead Temperature (Soldering) 10 sec                   |               |

Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

# TEST CIRCUIT





### ELECTRICAL CHARACTERISTICS

(Typical values are at T<sub>A</sub>=25°C, unless otherwise specified.) (Note 1)

| PARAMETER               | SYMBOL | TEST CONDITIONS                                                                    |                                 | MIN.   | TYP. | MAX.   | UNIT |
|-------------------------|--------|------------------------------------------------------------------------------------|---------------------------------|--------|------|--------|------|
| Operating Voltage Range | Vcc    |                                                                                    |                                 | 0.9    |      | 6      | V    |
| Supply Current          | Icc    | V <sub>CC</sub> = V <sub>TH</sub> +0.1V                                            |                                 |        | 1    | 3      | μΑ   |
|                         |        | AIC809-23                                                                          | T <sub>A</sub> =+25°C           | 2.265  | 2.3  | 2.335  |      |
|                         |        |                                                                                    | T <sub>A</sub> = -40°C to +85°C | 2.254  |      | 2.346  |      |
|                         |        | A10000 00                                                                          | T <sub>A</sub> =+25°C           | 2.561  | 2.6  | 2.639  |      |
|                         |        | AIC809-26                                                                          | T <sub>A</sub> = -40°C to +85°C | 2.548  |      | 2.652  |      |
|                         |        | A1C000 00                                                                          | T <sub>A</sub> =+25°C           | 2.857  | 2.9  | 2.944  |      |
|                         |        | AIC809-29                                                                          | T <sub>A</sub> = -40°C to +85°C | 2.842  |      | 2.958  |      |
|                         |        | A1C000 24                                                                          | T <sub>A</sub> =+25°C           | 3.054  | 3.1  | 3.147  |      |
| Doost Throohold         | \/·    | AIC809-31                                                                          | T <sub>A</sub> = -40°C to +85°C | 3.038  |      | 3.162  | \    |
| Reset Threshold         | VTH    | A10000 40                                                                          | T <sub>A</sub> =+25°C           | 3.940  | 4.0  | 4.060  | V    |
|                         |        | AIC809-40                                                                          | T <sub>A</sub> = -40°C to +85°C | 3.920  |      | 4.080  |      |
|                         |        | AIC809-42                                                                          | T <sub>A</sub> =+25°C           | 4.137  | 4.2  | 4.263  |      |
|                         |        |                                                                                    | T <sub>A</sub> = -40°C to +85°C | 4.116  |      | 4.284  |      |
|                         |        | AIC809-44                                                                          | T <sub>A</sub> =+25°C           | 4.334  | 4.4  | 4.466  |      |
|                         |        |                                                                                    | T <sub>A</sub> = -40°C to +85°C | 4.312  |      | 4.488  |      |
|                         |        | AIC809-46                                                                          | T <sub>A</sub> =+25°C           | 4.531  | 4.6  | 4.669  |      |
|                         |        |                                                                                    | T <sub>A</sub> =-40°C to +85°C  | 4.508  |      | 4.692  |      |
| Vcc to Reset Delay      | TRD    | V <sub>CC</sub> =V <sub>TH</sub> to (V <sub>TH</sub> -0.1V), V <sub>TH</sub> =3.1V |                                 |        | 20   |        | μS   |
| Reset Active Timeout    |        | \ -\\                                                                              | T <sub>A</sub> =+25°C           | 140    | 230  | 560    | C    |
| Period                  | TRP    | $V_{CC} = V_{TH (MAX)}$                                                            | T <sub>A</sub> = -40°C to +85°C | 100    |      | 1030   | mS   |
| DESET Outsid Vallage    | Vон    | VCC=VTH+0.1V, ISOURCE=1mA                                                          |                                 | 0.8Vcc |      |        | \ /  |
| RESET Output Voltage    | Vol    | VCC=VTH - 0.1V, ISINK=1mA                                                          |                                 |        |      | 0.2Vcc | V    |
| RESET Output Voltage    | Vон    | VCC=VTH-0.1V, ISOURCE=1mA VCC=VTH+0.1V, ISINK=1mA                                  |                                 | 0.8Vcc |      |        | V    |
| NESET Output voltage    | Vol    |                                                                                    |                                 |        |      | 0.2Vcc | V    |

Note1: Specifications are production tested at T<sub>A</sub>=25°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC).

Note2: RESET output is for AIC809; RESET output is for AIC810.



### ■ TYPICAL PERFORMANCE CHARACTERISTICS

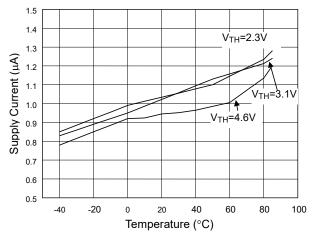



Fig 1 Supply Current vs. Temperature

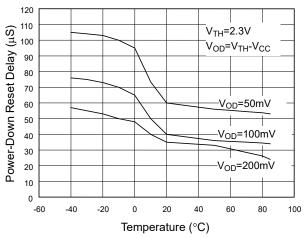



Fig 2 Power-Down Reset Delay vs. Temperature

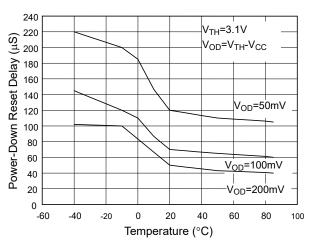



Fig 3 Power-Down Reset Delay vs. Temperature

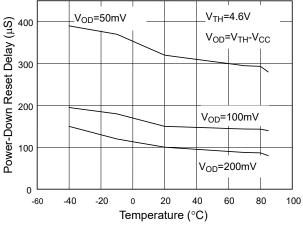



Fig 4 Power-Down Reset Delay vs. Temperature

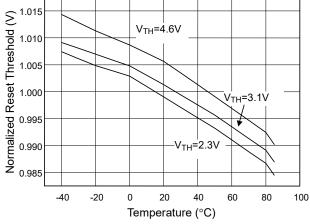
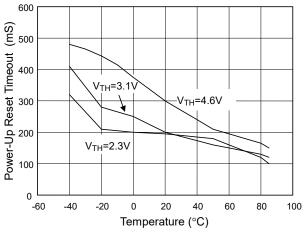
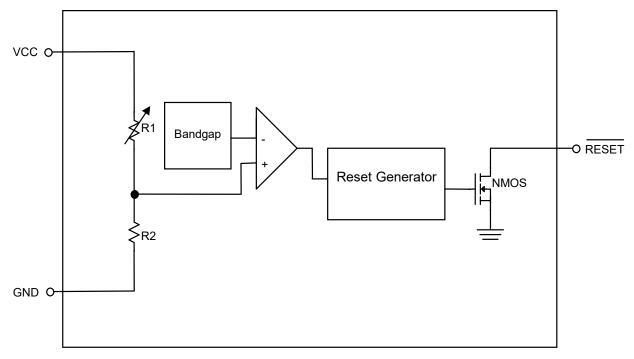
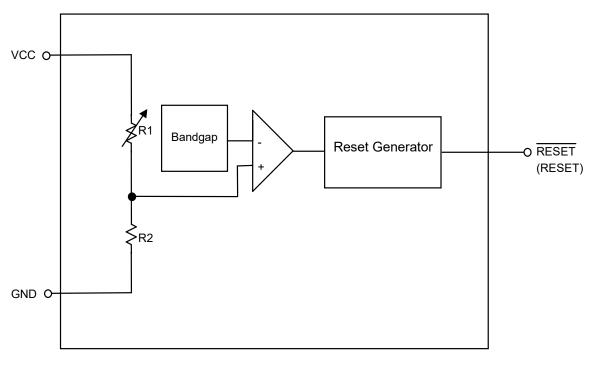



Fig 5 Normalized Reset Threshold vs. Temperature



Fig 6 Power-Up Reset Timeout vs. Temperature



# BLOCK DIAGRAMS



N-ch Open-Drain Type



Push-Pull Type



### ■ PIN DESCRIPTIONS

GND Pin : Ground.

RESET Pin (AIC809) : Active low output pin. RESET Output remains low while Vcc is below the reset

threshold.

RESET Pin (AIC810) : Active high output pin. RESET output remains high while Vcc is below the reset

threshold.

Vcc Pin : Supply voltage.

### ■ DETAIL DESCRIPTIONS OF TECHNICAL TERMS

#### RESET OUTPUT

 $\mu$  P will be activated at a valid reset state. These  $\mu$  P supervisory circuits assert reset to prevent code execution errors during power-up, power-down, or brownout conditions.

RESET is guaranteed to be a logic low for  $V_{TH}$ >VCC>0.9V. Once VCC exceeds the reset threshold, an internal timer keeps  $\overline{RESET}$  low for the reset timeout period; after this interval,  $\overline{RESET}$  goes high.

If a brownout condition occurs (VCC drops below the reset threshold), RESET goes low. Any time VCC goes below the reset threshold, the internal timer resets to zero, and RESET goes low. The

internal timer is activated after VCC returns above the reset threshold, and RESET remains low for the reset timeout period.

# BENEFITS OF HIGHLY ACCURATE RESET THRESHOLD

AIC809/810 with specified voltage as 5V±10% or 3V±10% are ideal for systems using a 5V±5% or 3V±5% power supply. The reset is guaranteed to assert after the power supply falls out of regulation, but before power drops below the minimum specified operating voltage range of the system ICs. The pre-trimmed thresholds are reducing the range over which an undesirable reset may occur.

#### APPLICATION INFORMATION

#### **NEGATIVE-GOING VCC TRANSIENTS**

In addition to issuing a reset to the  $\mu$ P during power-up, power-down, and brownout conditions, AIC809 series are relatively resistant to short-duration negative-going VCC transient.

# ENSURING A VALID RESET OUTPUT DOWN TO VCC=0

When VCC falls below 0.9V, AIC809 RESET output no longer sinks current; it becomes an open circuit. In this case, high-impedance CMOS logic inputs connecting to RESET can drift to undetermined voltages. Therefore, AIC809/810

with CMOS is perfect for most applications of VCC below 0.9V. However in applications where RESET must be valid down to 0V, adding a pull-down resistor to RESET causes any leakage currents to flow to ground, holding RESET low.

# INTERFACING TO $\mu$ P WITH BIDIRECTIONAL RESET PINS

The RESET output on the AIC809N is open drain, this device interfaces easily with  $\mu$  Ps that have bidirectional reset pins. Connecting the  $\mu$  P supervisor's  $\overline{\text{RESET}}$  output directly to the microcontroller's  $\overline{\text{RESET}}$  pin with a single pull-up resistor allows either device to assert reset.



## APPLICATION CIRCUIT

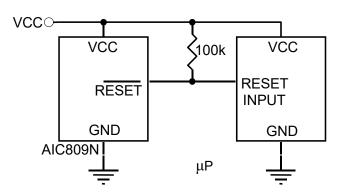



Fig. 7 Open-Drain Output

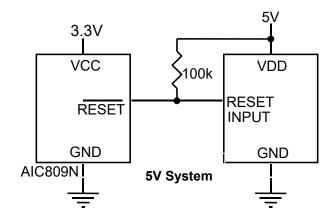
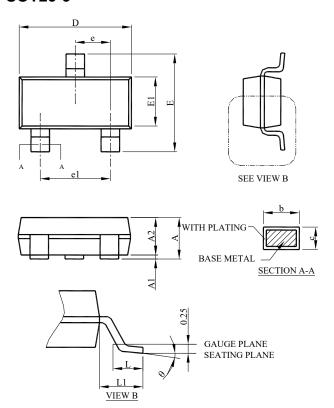




Fig. 8 Open-Drain Output Allows Use with Multiple Supplies



# PHYSICAL DIMENSIONS (unit: mm)

#### SOT23-3



| S                          | SOT23-3  |             |  |  |
|----------------------------|----------|-------------|--|--|
| S<br>Y<br>M<br>B<br>O<br>L | MILLIM   | MILLIMETERS |  |  |
| O<br>L                     | MIN.     | MAX.        |  |  |
| А                          | 0.95     | 1.45        |  |  |
| A1                         | 0.00     | 0.15        |  |  |
| A2                         | 0.90     | 1.30        |  |  |
| b                          | 0.30     | 0.50        |  |  |
| С                          | 0.08     | 0.22        |  |  |
| D                          | 2.80     | 3.00        |  |  |
| Е                          | 2.60     | 3.00        |  |  |
| E1                         | 1.50     | 1.70        |  |  |
| e                          | 0.95 BSC |             |  |  |
| e 1                        | 1.90 BSC |             |  |  |
| L                          | 0.30     | 0.60        |  |  |
| L1                         | 0.60     | 0.60 REF    |  |  |
| θ                          | 0°       | 0° 8°       |  |  |

Note: 1. Refer to JEDEC MO-178.

- 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side.
- 3. Dimension "E1" does not include inter-lead flash or protrusions.
- 4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

#### Note:

Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.