

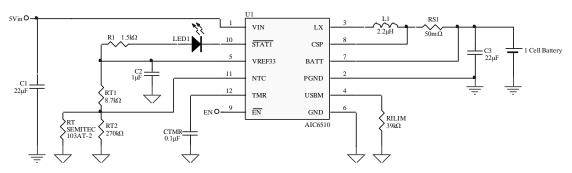
2A 1 Cell Lithium-Ion Battery Switching Charger

■ FEATURES

- Complete Switching Charger for 1 Cell Lithium-Ion Battery
- No External MOSFET, Blocking Diode Required
- Up to 2A Programmable Charge Current
- Reverse Leakage Protection Prevents Battery Drainage
- Integrated Current and Voltage Regulation
- · Charge Operation Indicators
- Programmable Safety Timer
- Status Output for LED or System Interface Indicates Charge and Fault Conditions
- Battery Insertion and Removal Detection
- Available in DFN-12 (3mmx3mm) Package

APPLICATIONS

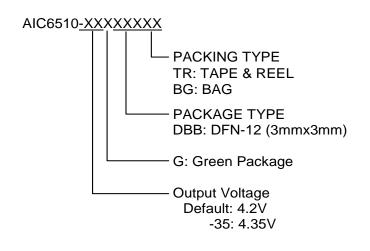
- Cellular Phones
- Handheld Devices
- Digital Still Cameras
- MP3 Players
- PDAs
- Charging Docks and Cradles
- USB Chargers

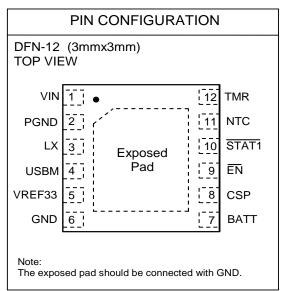

GENERAL DESCRIPTION

The AIC6510 is highly integrated Li-ion and Li-Pol switching charge devices targeted at space limited portable applications. It offers integrated power MOSFETs, reverse blocking protection, high accuracy current and voltage regulation, charge status, and charge termination, in a small package.

The AIC6510 regulates the charge current and battery voltage using two control loops to realize highly accurate constant-current charge and constant-voltage charge. A 100% duty cycle can be achieved when battery voltage is close to the input voltage due to the high-side P-Channel MOSFET.

In addition to the standard features, AIC6510 offers a multitude of additional features. These include temperature-sensing input for detecting hot or cold battery packs and programmable safety timer.


TYPICAL APPLICATION CIRCUIT



Typical Application Circuit

ORDERING INFORMATION

Example: AIC6510GDBBTR

→ 4.2V Output Voltage, in DFN-12 (3mmx3mm) Green Package and Tape & Reel Packing Type

AIC6510-35GDBBTR

→ 4.35V Output Voltage, in DFN-12 (3mmx3mm) Green Package and Tape & Reel Packing Type

■ ABSOLUTE MAXIMUM RATINGS

Input Supply Voltage, VIN	
LX Pin Switch Voltage0.3V to $(V_{\text{IN}}$ + 0.3V)	
CSP Pin and BATT Pin Voltage0.3V to 6V	
Other I/O Pin Voltage0.3V to 6V	
Operating Maximum Junction Temperature T _J	
Storage Temperature Range T_{STG} 65°C~150°C	
Lead Temperature (Soldering 10 Sec.)260°C	
Operating Ambient Temperature Range T_A 40°C~85°C	
Thermal Resistance Junction to Case DFN-12 (3mmx3mm)*20°C/W	
Thermal Resistance Junction to Ambient DFN-12 (3mmx3mm)*50°C/W	
(Assume no Ambient Airflow)	

Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. *The package is place on a two layers PCB with 2 ounces copper and 2 square inch, connected by 8 vias.

■ ELECTRICAL CHARACTERISTICS

(V_{IN}=5V, T_A=25°C, Unless otherwise specified.) (Note1)

PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
VIN Input						
Operation Voltage		VIN	4.5	5	6	V
Oscillator Frequency		f _{OSC}	1.275	1.5	1.725	MHz
P-Channel On-Resistance		R _{DSH(ON)}		130		mΩ
N-Channel On-Resistance		R _{DSL(ON)}		150		mΩ
Supply Current	EN=0V, No Load				2.0	mA
Supply Current	/ Current EN=4V				20	μА
Current Regulation						
Output Current Range	RS1=50m Ω	I _{O(OUT)}	1800	2000	2200	mA
Peak Inductor Current		I _{PK}	3000	3800		mA
Battery Charger						
Tanada Damas Walkana	For AIC6510GLT	V _{BATT_FULL}	4.179	4.2	4.221	- V
Terminal Battery Voltage	For AIC6510-35GLT		4.328	4.35	4.372	
Dattama Ocean Valtana Thurada ald	For AIC6510GLT	V _{BOVP}	4.26	4.34	4.42	- V
Battery Over-Voltage Threshold	For AIC6510-35GLT		4.412	4.50	4.578	
D 1 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	For AIC6510GLT	V _{RECHG}		4.0		- V
Recharge Threshold at V _{BATT}	For AIC6510-35GLT			4.14		
Recharge Hysteresis				100		mV
Title Olever Theodoll	For AIC6510GLT	V _{TC}		3		V
Trickle-Charge Threshold	For AIC6510-35GLT			3.107		
Trickle-Charge Hysteresis				300		mV
Trickle-Charge Current		I _{TC}		10	15	% I _{CC}
Termination Charge Current		I _{BF}	5	10	15	% I _{CC}

■ ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Maximum Current-Sense Voltage(CSP to BATT)				100		mV
STAT1 Open-Drain Sink Current	V _{DRAIN} =0.3V,			20		mA
VIN Min Head-room(Reverse Blocking)	V _{IN} - V _{BATT}			200		mV
CSP,BATT Current	Charging Disabled	I _{CSP,} I _{BATT}			1	μА
EN Logic						
EN Input Low Voltage					0.8	V
EN Input High Voltage			1.2			V
= 100 to 100 most	EN=4V			4		μА
EN Input Current	EN=4V			0.2		μА
VREF33 Output Voltage		V _{VREF33}	3.23	3.3	3.37	V
VREF33 Load Regulation	I _{LOAD} =0 to 20mA,	ΔV_{VREF33}		0.05		V
Protection						
VIN Under Voltage Lockout Protection	V _{IN} rising		3.55	3.75	3.95	V
VIN UVLO Hysteresis				200		mV
Trickle-Charge Time	C_{TMR} =0.1 μ F,			30		min
Total Charge Time	C _{TMR} =0.1μF,			180		min
NTC High Temperature Rising Threshold			30	32	34	%V _{REF33}
NTC Low Temperature Falling Threshold			72	74	76	%V _{REF33}
Thermal Shutdown				150		$^{\circ}\!\mathbb{C}$

Note 1: Specifications are production tested at $T_A=25^{\circ}C$. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC).

TYPICAL PERFORMANCE CHARACTERISTICS

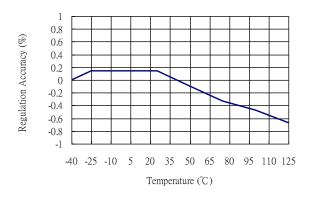


Fig. 1 V_{BATT} Accuracy vs. Temperature

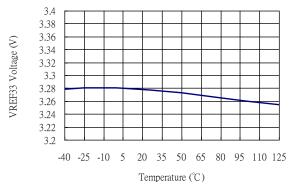


Fig. 3 VREF33 Voltage vs. Temperature

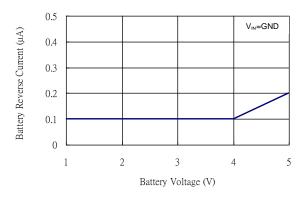


Fig. 5 Battery Reverse Current vs. Battery Voltage

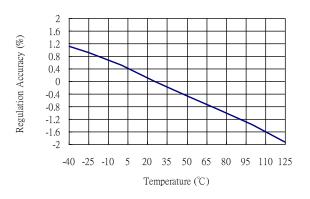


Fig. 2 Charge Current Accuracy vs. Temperature

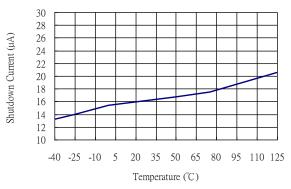


Fig. 4 Shutdown Current vs. Temperature

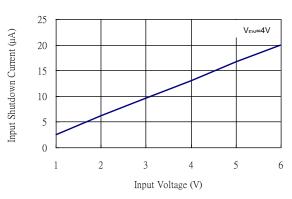


Fig. 6 Shutdown Current vs. Input Voltage

■ TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

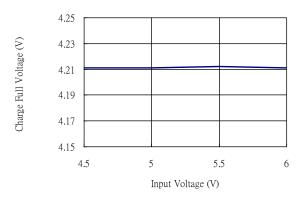


Fig. 7 Charge Full Voltage vs. Input Voltage

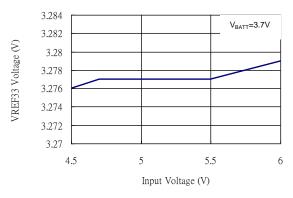


Fig. 9 VREF33 Voltage vs. Input Voltage

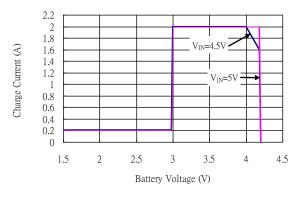


Fig. 11 Charge Current

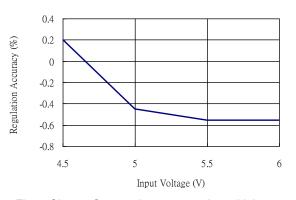


Fig. 8 Charge Current Accuracy vs. Input Voltage

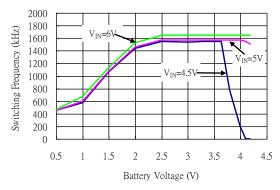


Fig. 10 Switching Frequency vs. Battery Voltage

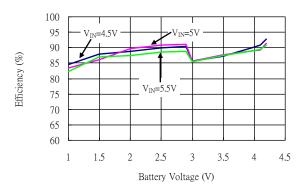


Fig. 12 Efficiency

 V_{BATT}

■ TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

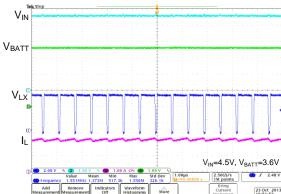
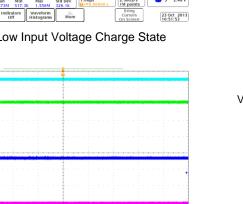



Fig. 13 Low Input Voltage Charge State

 V_{IN} =4.5V, V_{BATT} =4.07V

Fig. 15 Low Input Voltage Charge State

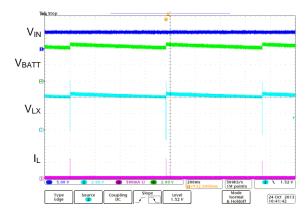


Fig. 17 BATT Float Waveform

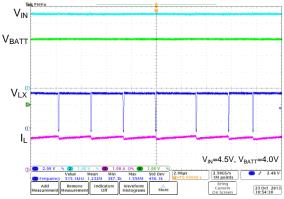


Fig. 14 Low Input Voltage Charge State

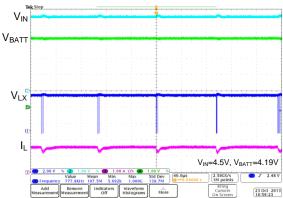


Fig. 16 Low Input Voltage Charge State

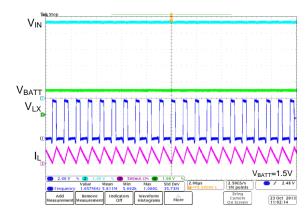


Fig. 18 TC Charge Steady State

■ TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Fig. 19 CC Charge Steady State

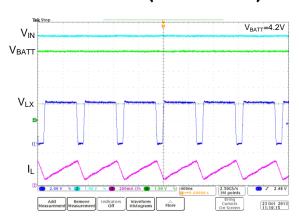


Fig. 20 CV Charge Steady State

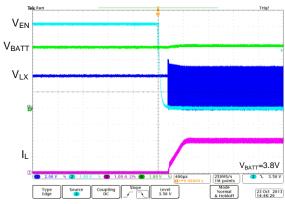


Fig. 21 Enable On

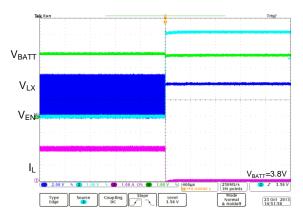


Fig. 22 Enable Off

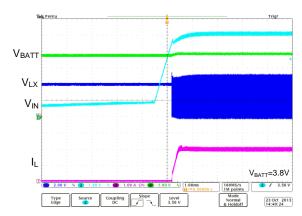


Fig. 23 Power On

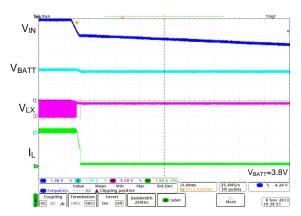
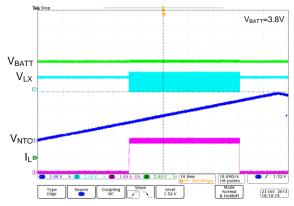



Fig. 24 Power Off

■ TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

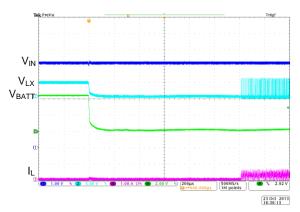
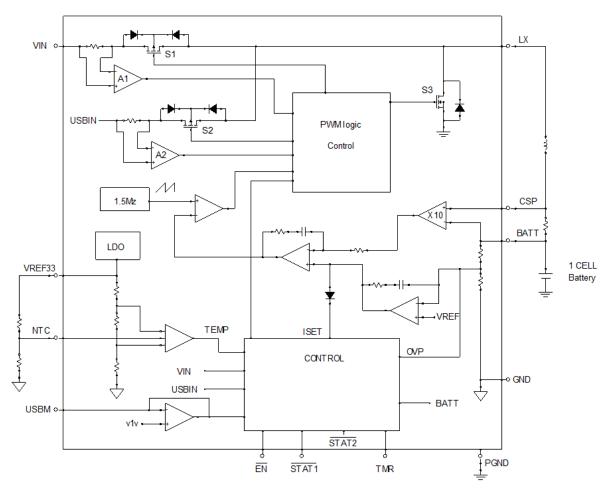



Fig. 26 Short-Circuit Protection

BLOCK DIAGRAM

Functional Block Diagram of AIC6510

■ PIN DESCRIPTIONS

Pin Number	Pin name	Pin Function		
1	VIN	Power Supply Input. Decouple this pin to PGND with a capacitor.		
2	PGND	Power Ground. Connect this pin to the negative terminal of input capacitor and output capacitor.		
3	LX	Internal Power MOSFET Switches Output. Connect this pin to the inductor.		
4	USBM	USB Input Current-Limit Set.		
5	VREF33	Reference Voltage Output.		
6	GND	Signal Ground. All small-signal components should connect to this ground, which in turn connects to PGND at one point.		
7	BATT	Positive Battery Terminal.		
8	CSP	Charge Current Sense Positive Terminal.		
9	ĒN	Enable Pin.		
10	STAT1	Charge Status Indicator: 1.Charging; 2. End of charge; 3. Charging Suspended; 4. Fault; 5. Invalid Input Supply.		
11	NTC	Temperature Sense Input		
12	TMR	Internal Safety Timer Set.		

APPLICATION INFORMATIONS

The AIC6510 is a Li-ion and Li-Pol switching charge device with built-in power MOSFETs. It supports a precision Li-Ion, Li-Pol charging system suitable for singlecells. The AIC6510 integrates an internal synchronous rectifier, which eliminates the external Schottky diode and increases efficiency. During normal operation, the AIC6510 can regulate the charge current and battery voltage through two feedback control loops. This feedback control circuit will determine the duty cycle of internal high-side power switch (P-channel MOSFET). While the high-side power switch is turned on, the lowside power switch (N-channel MOSFET) will be turned off. Similarly, when the high-side power switch is turned off, the low-side power switch will be turned on until the beginning of the next switching cycle or the inductor current starts to reverse.

When the input voltage approaches the output voltage, the AIC6510 smoothly transits to 100% duty cycle operation. This allows AIC6510 to regulate the charge current and battery voltage until AIC6510 completely enters 100% duty cycle operation. In 100% duty cycle mode, the high-side power switch is turned on continuously to deliver charge current to the battery.

Trickle Charge

Figure 28 is the typical charging profile. During a charge cycle, the AIC6510 provides a trickle charge current to revive the deeply discharged battery if the battery voltage is lower than the TC threshold. In the trickle charge mode, the trickle charge current is the 10% of the constant charge current.

$$I_{\text{TC}} = 0.1 \times I_{\text{CC}} = \frac{10 \text{mV}}{\text{RS1(m}\Omega)}(A)$$

During the trickle charge period, the safety timer of trickle charge mode, $t_{(Trickle_tmr)}$, can be activated. If the battery voltage cannot reach the TC threshold within

the timer period, the AIC6510 can terminate the trickle charge action and indicates FAULT on the $\overline{\text{STAT1}}$ pin. The safety time of trickle charge mode can be set by the capacitor connected between the TMR pin and GND pin, C_{TMR} .

$$t_{\text{Trickle_tmr}} = 30 \times \frac{C_{\text{TMR}}}{0.1 \mu F} \text{ (Minutes)}$$

Constant Current Charge

The AIC6510 provides a constant charge current to charge the battery when the battery voltage is between the TC threshold and CV charge threshold. The constant charge current can be determined by the resistor connected between the CSP pin and BATT pin, RS1.

$$I_{CC} = \frac{100mV}{RS1(m\Omega)}(A)$$

Constant Voltage Charge

The AlC6510 monitors the battery voltage through the BATT pin. When the battery voltage rises to CV charge threshold, the AlC6510 will enter constant voltage charge mode and the charge current will begin to decrease.

During the charge period, the total charge safety timer, $t_{(Total_tmr)}$, can be activated. If the termination threshold, l_{BF} , is not detected within the timer period, the AIC6510 can terminate the charge action and indicates FAULT on the $\overline{STAT1}$ pin. The safety time of CC/CV charge mode can be set by C_{TMR} .

$$t_{\text{Total_tmr}} = 3 \times \frac{C_{\text{TMR}}}{0.1 \mu \text{F}} (\text{hr})$$

The safety timer can be disabled by pulling the TMR pin to GND.

Charge Termination and Recharge

The AIC6510 can terminate the charge action and STAT1 pin can become an open drain when the charge

current falls below the termination threshold, I_{BF} , during the constant voltage charge period. The safety timer will also be turned off and reset. After the charge action is terminated, the AIC6510 can restart the charge action once the voltage on the BATT pin falls below the recharge threshold V_{RECHG} , as shown in Figure 29.

Timer Fault Recovery

As shown in the figure 30, the AIC6510 can exit from the timer fault state and enter a new charge cycle when one of the following conditions occurs.

- (1) The battery voltage falls below the recharge threshold V_{RFCHG} .
- (2) The EN is toggled.

Battery Temperature Detection

During the charge period, the AlC6510 continuously monitors the battery temperature by measuring the voltage on the NTC pin. A negative temperature coefficient thermistor and a resistor-divider, R_{T1} and R_{T2} , typical develop this voltage, as shown in figure 27. The AlC6510 compare the voltage on the NTC pin against the NTC high temperature threshold and NTC low temperature threshold to determine whether charge action is allowed. Once the battery temperature outside the normal temperature range is detected, the AlC6510 immediately suspends charge action. The charge action is suspended by turning off the synchronous stepdown converter. The charge action is resumed when the battery temperature returns to the normal range.

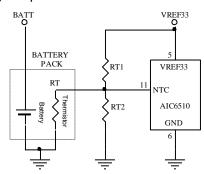


Fig. 27 Battery Temperature Sense Circuit

For R_{T1} and R_{T2} in the circuit, the below equations provide the calculations.

$$R_{\text{T1}} = \frac{525}{296} \times \frac{R_{\text{TL}} \times R_{\text{TH}}}{(R_{\text{TI}} - R_{\text{TH}})}$$

$$R_{_{T2}} = \frac{525}{104} \times \frac{R_{_{TL}} \times R_{_{TH}}}{\left(R_{_{TL}} - \frac{629}{104} \times R_{_{TH}}\right)}$$

Where R_{TL} is the resistance of thermistor at lower limit of temperature protection and R_{TH} is the resistance of thermistor at upper limit of temperature protection.

By applying a constant voltage between the NTC high temperature threshold and NTC low temperature threshold to NTC pin, the battery temperature detection function can be disabled.

Under Voltage Lockout and Sleep Mode

The AIC6510 includes an under voltage lockout circuit, which monitors the input power source and keeps the charger in shutdown mode until VIN rises above the under voltage lockout threshold. In addition, in order to prevent battery drainage, the AIC6510 can enter sleep mode if the VIN falls below the sleep mode entry threshold.

Short Circuit Protection

The AIC6510 provides battery short circuit protection function. While the battery voltage is lower than 1.5V, the AIC6510 can indicate FAULT on the STAT1 pin. During the battery short circuit period, the peak inductor current limit and the switching frequency will be reduced to minimize the power loss.

THERMAL PROTECTION

The AIC6510 includes a thermal-limiting circuit, which is designed to protect the device from excessive temperature. When the junction temperature exceeds $T_J=150^{\circ}C$, the thermal-limiting circuit suspends the charge action and allows the IC to cool. The charge

action is resumed when the junction temperature falls below approximately $T_J=120^{\circ}C$.

Status Output

The AIC6510 provides one open-drained output: STAT1. The STAT1 can indicate the charging status of the charger, as shown in the following table. The status pin can be used to drive an LED or communicate to the host processor.

Table 1. Status Pin Summary

Table 1. Status I III Sulfilling	ary
CHARGE STATE	STAT1
Charge-in-progress	Low
End of Charge; Faults(Thermal Shutdown, Timer Fault, Battery Temperature Detection Fault, V _{BATT} <1.5V); Under Voltage Lockout (UVLO); Sleep Mode; EN Disabled	High

Inductor

The inductor selection depends on the current ripple of inductor, the input voltage and the output voltage.

$$L \ge \frac{V_{BATT}}{f_{OSC} \cdot \Delta I_{L}} \left(1 - \frac{V_{BATT}}{V_{IN}} \right)$$

Accepting a large current ripple of inductor allows the use of a smaller inductance. However, higher current ripple of inductor can cause higher output ripple voltage and large core loss. By setting an acceptable current ripple of inductor, a suitable inductance can be obtained from above equation.

In addition, it is important to ensure the inductor saturation current exceeds the peak value of inductor current in application to prevent core saturation. The peak value of inductor current can be calculated according to the following equation.

$$I_{\text{PEAK}} = I_{\text{CC}(\text{max})} + \frac{V_{\text{BATT}}}{2 \times f_{\text{OSC}} \cdot L} \Bigg(1 - \frac{V_{\text{BATT}}}{V_{\text{IN}}} \Bigg)$$

Input Capacitor and Output Capacitor

To prevent the high input voltage ripple and noise

resulted from high frequency switching, the use of low ESR ceramic capacitor for the maximum RMS current is recommended. The approximated RMS current of the input capacitor can be calculated according to the following equation.

$$I_{\text{CINRMS}} \approx \sqrt{I_{\text{CC(MAX)}}^2 \times \frac{V_{\text{BATT}} \left(V_{\text{IN}} - V_{\text{BATT}}\right)}{V_{\text{IN}}^2} + \frac{\Delta I_L^2}{12}}$$

For most AIC6510 applications, a $22\mu F$ ceramic input capacitor is used.

The selection of output capacitor depends on the required output voltage ripple. The output voltage ripple can be expressed as:

$$\Delta V_{\text{OUT}} = \frac{\Delta I_{L}}{8 \times f_{\text{OSC}} \cdot C_{\text{OUT}}} + \text{ESR} \cdot \Delta I_{L}$$

In order to ensure the +/- 0.5% battery voltage accuracy, the maximum output voltage ripple must be lower than 0.5%. The maximum output voltage ripple will occur at the minimum battery voltage of the CC charge and the maximum input voltage. For lower output voltage ripple, the use of low ESR ceramic capacitor is recommended.

When choosing the input and output ceramic capacitors, X5R and X7R types are recommended because they retain their capacitance over wider ranges of voltage and temperature than other types. In addition, when using the ceramic capacitor as the input capacitor, the high input voltage transient may be generated at some start-up conditions, such as connecting the input to a live power source. By adding a small resistor in series with the input ceramic capacitor, the high input voltage transient can be improved.

Layout Consideration

In order to ensure a proper operation of AIC6510, the following points should be managed comprehensively.

- The input capacitors and VIN pin should be placed as close as possible to each other to reduce the input noise.
- The output loop, which is consisted of the inductor, the internal high-side power switch, the internal low-side power switch and the output capacitor, should be kept as small as possible.
- The BATT pin should be connected to the battery pack directly and the route should be as short as possible.
- 4. The routes with large current should be kept short and wide.
- 5. Logically the large current on the charger should flow at the same direction.

- The CSP and BATT pins should be connected to the RS1 resistor directly and the route should be away from the noise sources.
- The USBM pin should be connected to the R_{ILIM} resistor directly and the route should be away from the noise sources.
- 8. The TMR pin should be connected to the C_{TMR} capacitor directly and the route should be away from the noise sources.
- The NTC pin should be connected to the battery temperature measurement network directly and the route should be away from the noise sources.
- All small-signal components should connect to GND, which in turn connects to PGND at one point.

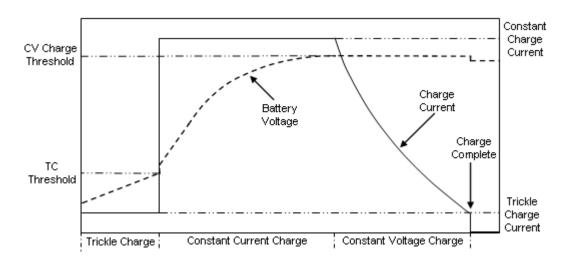


Fig. 28 Typical Charging Profile

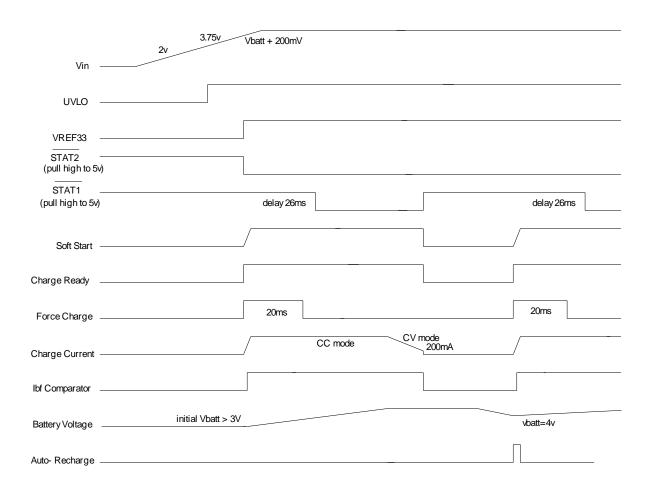
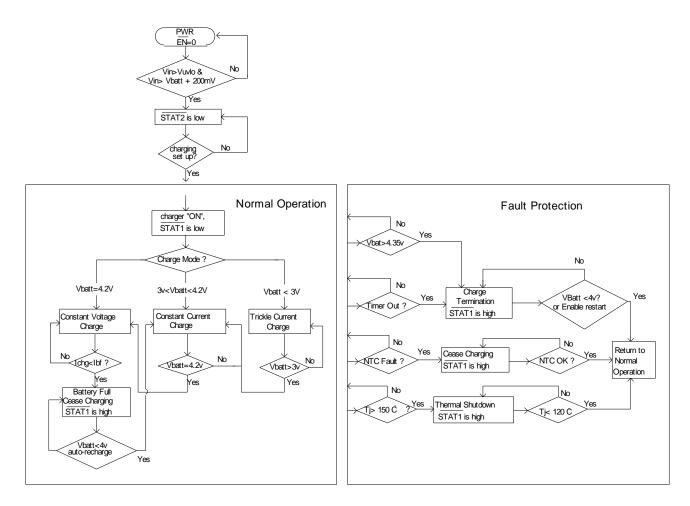
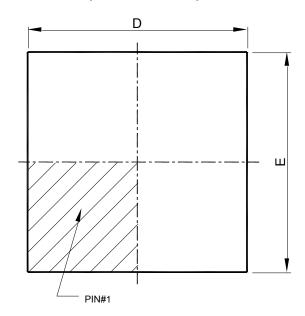
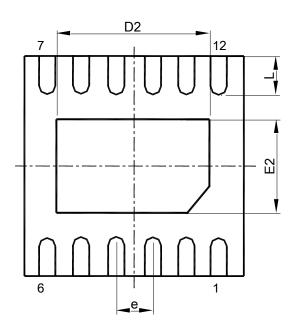
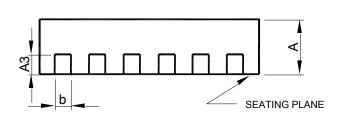


Fig. 29 Battery Charge Timing Diagram


Fig. 30 Operation Flow Chart



PHYSICAL DIMENSIONS

• DFN-12 (3x3x0.75-0.45)

S Y	DFN-12 (3x	3x0.75-0.45)		
M B O L	MILLIMETERS			
O L	MIN.	MAX.		
Α	0.70	0.80		
А3	0.20 BSC			
b	0.18	0.30		
D	2.90	3.10		
D2	2.20	2.70		
Е	2.90	3.10		
E2	1.40	1.80		
е	0.45 BSC			
L	0.30	0.50		

Note: 1. DIMENSION AND TOLERANCING CONFORM TO ASME Y14.5M-1994.
2.CONTROLLING DIMENSIONS: MILLIMETER, CONVERTED INCH
DIMENSION ARE NOT NECESSARILY EXACT.

Note:

Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.