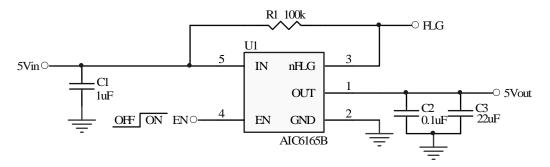


Precision Power Distribution Switch

■ FEATURES

- Integrated 60mΩ Power MOSFET
- Low Supply Current
- 30µA Typical at Switch On State
- 1µA Typical at Switch Off State
- Wide Input Voltage Range: 2.5V to 5.5V
- Fast Transient Response: 8µs
- 0.1ms Typical Rise Time
- Reverse Current Flow Blocking
- Deglitched Open-Drain Over-Current Flag Output
- Thermal Shutdown Protection
- Hot Plug-In Application (Soft-Start)
- SOT23-5 Package.

APPLICATIONS

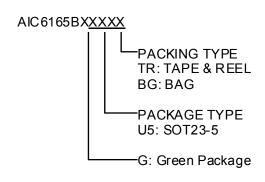

- USB Bus/Self Powered Hubs
- · Battery-Charger Circuits
- Personal Communication Devices
- Notebook Computers

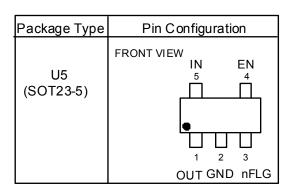
DESCRIPTION

The AIC6165B is a cost-effective, low voltage, single P-MOSFET load switch, optimized for self-powered and bus-powered Universal Serial Bus (USB) applications. This switch operates with inputs ranging from 2.5V to 5.5V, making it ideal for both 3V and 5V systems. The switch's low $R_{\rm DS(ON)},\ 60m\Omega,\ meets$ USB voltage drop requirements. A built-in P-channel MOSFET with true shutdown function to eliminate any reversed current flow across the switch when it is powered off. When the output voltage is higher than input voltage, the power switch is turned off by internal output reverse-voltage comparator.

nFLG is an open-drain output to signal over-current or over temperature event. In addition, nFLG also has typical 2.5ms deglitch timeout period and signals output reverse-voltage condition.

APPLICATION CIRCUIT




Typical Application Circuit

TEL: 886-3-5772500 FAX: 886-3-5772510

ORDERING INFORMATION

Example: AIC6165BGU5TR

→ in SOT23-5 Green package and TAPE & REEL packing

Marking

Top Mark: T16BXXX (T16B: Device Code, XXX: Inside code)

Part No.	Package Code	Package Type	Marking
AIC6165B	GU5	SOT23-5	T16BXXX

■ ABSOLUTE MAXIMUM RATINGS

Input Supply Voltage (V _{IN)}	-0.3V to 7V
EN Pin Voltage	
OUT Pin Voltage	
Junction Temperature _(Note2)	
Storage Temperature Range	-65°C ~ 150°C
Lead Temperature (Soldering, 10sec)	
(Assume no Ambient Airflow, no Heatsink)	

Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

■ ELECTRICAL CHARACTERISTICS

(V_{IN}= 5V, C_{IN}= C_{OUT} = 1μ F, T_A =25°C, unless otherwise specified.) (Note 1)

PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS
IN Section						
Input Voltage		V _{IN}	2.5		5.5	V
Supply Current, Enable	V _{IN} =5.5V, No load on OUT	I _{IN_ON}		30	60	μΑ
Shutdown Current, Disable	V _{IN} =5.5V, No load on OUT	I _{IN_OFF}		0.1	1	μΑ
Reverse Leakage Current	V _{OUT} =5.5V, V _{IN} =0V	I _{REV}		2	5	μΑ
Under Voltage Lockout Exit	V _{IN} rising from 0V to 5V	V _{UVLO_ON}		2	2.3	V
UVLO Hysteresis		V _{UVLO_HY}		100		mV
EN Section						
High-Level Enable Voltage	V _{IN} =5.5V	V _{EN_H}	1.5			V
Low-Level Disable Voltage	V _{IN} =2.5V	V _{EN_L}			1.0	V
EN Input Current	V _{EN} =5.5V or 0V	I _{EN}	-0.5	5	10	μΑ
Turn On Time	CL=1μF, RL=100Ω	T _{ON}		0.2		ms
Turn Off Time	CL=1μF, RL=100Ω	T _{OFF}		0.1		ms
OUT Section						
Over Current CC Regulation	V _{IN} =5V, V _{OUT} =3.5V	I _{oc}	1.6	2.1	2.3	Α
Reverse Voltage Protection	V _{OUT} -V _{IN}	V _{REVERSE}	5	20	50	mV
Output Rise Time	CL=1μF, RL=100Ω	T _{RISE}		0.1		ms
Output Fall Time	CL=1μF, RL=100Ω	T _{FALL}		0.3		ms
Response Time to Short Circuit		T _{IOS}		12		μs
FLG(Fault flag) Section						
Output Low Voltage	I _{FLG} =1mA	V _{OL}			180	mV
Continuous FLG Sink		I _{FLG}			10	mA
Off-State Current	Off-state leakage	I _{FLG_LEAK}			1	μΑ
Fault Flag Deglitch Time	V _{OUT} =100%	T _{FLG}		2.5		ms

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS
Power Switch						
Output MOSFET Resistance	I _{OUT} =1A	R _{DS_ON}		60		mΩ
Thermal Shutdown						
Thermal Shutdown Temperature		T _{NORMAL}		150		°C
Thermal Shutdown Threshold Hysteresis		T _{NORMAL_HY}		20		°C

- Note1: Specifications are production tested at T_A=25°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC).
- Note2: T_J is calculated from the ambient temperature T_A and power dissipation PD according to the following formula: $T_J = T_A + (PD) \times (250^{\circ}C/W)$.
- Note3: To exactly identify the short circuit characteristic of IC, avoid the test result interfered by parasitic inductor, output capacitor, and contact resistor. It is necessary to follow the recommendation as follows.

Please,

- 1. Add 1000µF of capacitor between VIN and GND, and close to IC.
- 2. Remove output capacitor.
- 3. Shorter the short circuit device wire.
- 4. Measure output current (I_{OUT}).

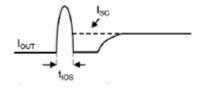


Fig. 1 Short Circuit Response Time

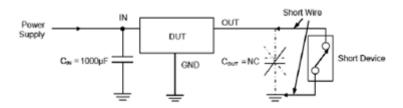
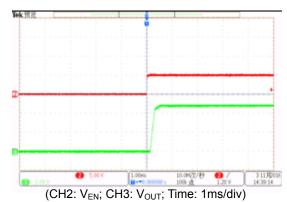



Fig. 2 Test Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

(CH2: V_{OUT} ; CH3: V_{IN} ; CH4: I_{OUT} ; Time: 200 μ s/div)

Fig. 5 Resistance Load Inrush Response

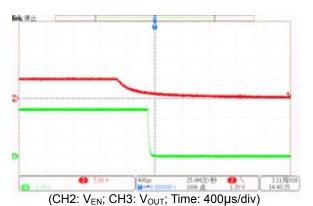


Fig. 4 Turn off Delay Time and Fall Time

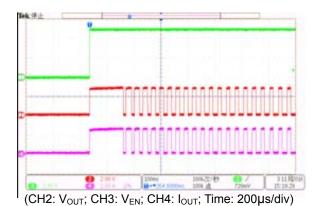
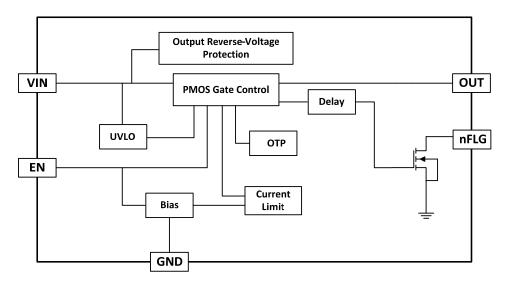



Fig. 6 Over Current Response

■ BLOCK DIAGRAM

Functional Block Diagram of AIC6165B

■ PIN DESCRIPTIONS

Pin No.	Pin Name	Pin Function	
1	OUT	Switch Output: Output MOSFET Source of switch.	
2	GND	IC ground connection.	
3	nFLG	Over-Current: Open-Drain Fault Flag Output.	
4	EN	Enable: Logic level enable input. Do not floating.	
5	IN	Input Supply: Output MOSFET Drain, which also supplies.	

APPLICATION INFORMATION

The AIC6165B is current-limited, power distribution switches using P-channel MOSFETs for applications where short circuits or heavy capacitive loads will be encountered and provide up to 1.6A of continuous load current. Additional device shutdown features include over temperature protection and reverse-voltage protection. The driver controls the gate voltage of the power switch. The driver incorporates circuitry that controls the rise and fall times of the output voltage to limit large current and voltage surges and provides built-in soft-start functionality. The AIC6165B enters constant current mode when the load exceeds the current-limit threshold

Input and Output

IN(input) is the power supply connection to the logic circuitry and the drain of the output MOSFET. OUT(output) is the source of the output MOSFET. In a typical application, current flows through the switch from IN to OUT toward the load. OUT pin must be connected together to the load.

Soft Start for Hot Plug-In Applications

In order to eliminate the upstream voltage droop caused by the large inrush current during hot-plug events, the "soft-start" feature effectively isolates the power source from extremely large capacitive loads, satisfying the USB voltage droop requirements.

FLG Function

The nFLG open-drain output is asserted (active low) when an over current condition is encountered after a 2.5ms deglitch timeout. The nFLG output remains asserted until the over-current condition is removed. Over temperature condition is also reported by nFLG open-drain output. In addition, nFLG is also asserted

(active low) in output reverse-voltage condition until the output reverse-voltage condition is removed. The input voltage range from 4V to 5.25V is recommended for FLG function application.

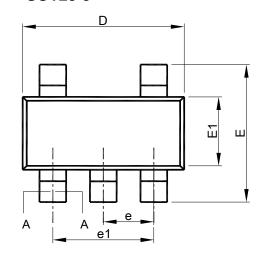
Thermal Shutdown

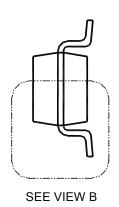
The AIC6165B has internal over temperature protection to shut down the device when its junction temperature exceeds 150°C with over load current condition, then after the device is disabled, if the junction temperature drops 20°C hysteresis typically the device will resume and restart to work. The switch continues to cycle off and on until the over current fault is removed.

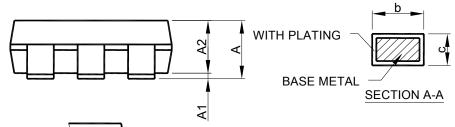
EN, the Enable Input

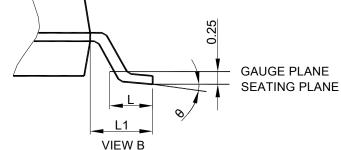
EN must be driven logic high or logic low for a clearly defined input. Floating the input may cause unpredictable operation, so please do not float EN input pin.

Layout Consideration


For best performance of the AIC6165B, the following guidelines must be strictly followed.


- Input and output capacitors should be placed close to the IC and connected to ground plane to reduce noise coupling.
- 2) The GND should be connected to a strong ground plane for heat sink.
- Keep the main current traces as possible as short and wide.




■ PHYSICAL DIMENSIONS (unit: mm)

SOT23-5

S Y	SOT23-5		
M B O L	MILLIMETERS		
O L	MIN.	MAX.	
Α	0.95	1.45	
A1	0.00	0.15	
A2	0.90	1.30	
b	0.30	0.50	
С	0.08	0.22	
D	2.80	3.00	
E	2.60	3.00	
E1	1.50	1.70	
е	0.95 BSC		
e1	1.90 BSC		
L	0.30	0.60	
L1	0.60 REF		
θ	0°	8°	

Note: 1. Refer to JEDEC MO-178AA.

- 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side.
- 3. Dimension "E1" does not include inter-lead flash or protrusions.
- 4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

Note:

Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.