

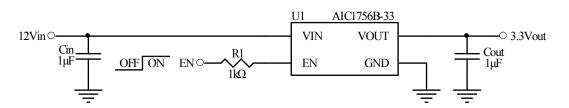
30V, 400mA Low Dropout Voltage Linear Regulator

FEATURES

- 2.2µA Ground Current at no Load
- ±2% Output Accuracy
- 400mA Output Current
- 10nA Disable Current
- Wide Operating Input Voltage Range: 2V to 30V
- Dropout Voltage: 0.15V at 100mA (V_{OUT}=5V)
- Support Fixed Output Voltage 1.2V, 1.8V, 3.3V, 5V, 9V, 12V
- Stable with Ceramic or Tantalum Capacitor
- Current Limit Protection
- Over-Temperature Protection
- SOT23-5 and DFN-4(1x1) Packages Available

APPLICATIONS

- Portable, Battery Powered Equipment
- Low Power Microcontrollers
- · Laptop, Palmtops and PDAs
- Wireless Communication Equipment
- · Audio/Video Equipment
- · Car Navigation Systems
- Industrial Controls
- Weighting Scales
- Meters
- Home Automation

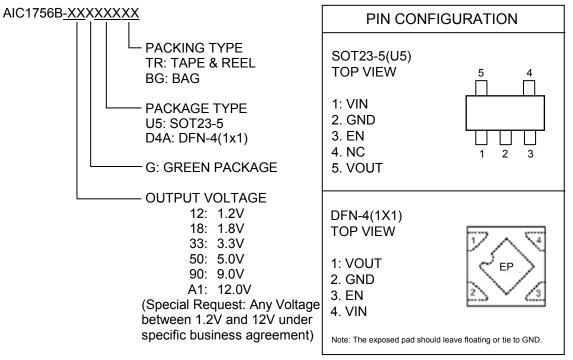

DESCRIPTION

The AIC1756B series are a group of low-dropout (LDO) voltage regulators offering the benefits of wide input voltage range, low dropout voltage, low power consumption, and miniaturized packaging.

Quiescent current of only $2.2\mu A$ makes these devices ideal for powering the battery-powered, always-on systems that require very little idlestate power dissipation to a longer service life. There is an option of shutdown mode by selecting the parts with the EN pin and pulling it low. The shutdown current in this mode goes down to only 10nA (typical).

The AIC1756B series of linear regulators are stable with the ceramic output capacitor over its wide input range from 2V to 30V and the entire range of output load current (0mA to 400mA).

■ TYPICAL APPLICATION CIRCUIT



AIC1756B Typical Application Circuit

FAX: 886-3-5772510

ORDERING INFORMATION

Example: AIC1756B-33GU5TR

→ 3.3V Version, in Green SOT23-5 Package and Tape & Reel Packing Type

■ ABSOLUTE MAXIMUM RATINGS

VIN Pin and EN Pin to GND Pin Voltage	0.3V to 36V
VOUT Pin to GND Pin Voltage	0.3V to 14V
VOUT Pin to VIN Pin Voltage	36V to 0.3V
Storage Temperature Range	60°C~150°C
Lead Temperature (Soldering, 10 sec)	260°C
Junction Temperature	150°C
Operating Ambient Temperature Range T _A	-40°C~85°C
Thermal Resistance Junction to Case, $R\theta_{\text{JC}}$	SOT23-5115°C/W
	DFN-4(1x1)65°C/W
Thermal Resistance Junction to Ambient, $R\theta_{\text{JA}}$	SOT23-5250°C/W
	DFN-4(1x1)195°C/W
(Assume no Ambient Airflow, no Heatsink)	

Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

■ ELECTRICAL CHARACTERISTICS

(V_{IN}=15V, V_{EN}=5V, T_A=25°C, unless otherwise specified) (Note 1)

PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage		V _{IN}	2		30	V
DC Output Voltage Accuracy	I _{LOAD} =0.1mA		-2		2	%
Dropout Voltage	I _{LOAD} =100mA, V _{OUT} ≥5V	V_{DROP}		0.15		
	I _{LOAD} =100mA, V _{OUT} =3.3V	V _{DROP_3.3V}		0.15		V
	I _{LOAD} =100mA, V _{OUT} =1.8V	V _{DROP_1.8V}		0.25		
Dropout Voltage	I _{LOAD} =200mA, V _{OUT} =1.8V	V _{DROP_1.8V}		0.47		V
	I _{LOAD} =300mA, V _{OUT} =1.8V			0.69		
	I _{LOAD} =400mA, V _{OUT} =1.8V			0.93		
Ground Current	I _{LOAD} =0mA, V _{OUT} ≤5V	ΙQ		2.2		- μA
	I _{LOAD} =0mA, 5V <v<sub>OUT≤12V</v<sub>	I_{QH}		4.2		
Shutdown GND Current	V _{EN} =0V, V _{OUT} =0V	I _{SD}		0.01	0.5	μΑ
Enable Threshold Voltage	EN Rising	V _{IH}	2.0			V
	EN Falling	V _{IL}			0.6	
EN Input Current	V _{EN} =30V	I _{EN}		10	100	nA
Line Regulation	I _{LOAD} =1mA, 5V≤V _{IN} ≤30V	ΔLINE		0.3		%
Load Regulation	1mA≤I _{LOAD} ≤400mA	ΔLOAD		0.1		%
Output Current Limit	V _{OUT} =0V	I _{LIM}	401	600		mA
Power Supply Rejection Ratio	V _{OUT} =5V, I _{LOAD} =1mA, V _{IN} =12V, f=100Hz	PSRR		70		dB
Thermal Shutdown Temperature	I _{LOAD} =10mA	T _{SD}		160		$^{\circ}\!\mathbb{C}$
Thermal Shutdown Hysteresis	I _{LOAD} =10mA	ΔT_{SD}		15		°C

Note 1. Specifications are production tested at T_A =25°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC).

■ TYPICAL PERFORMANCE CHARACTERISTICS

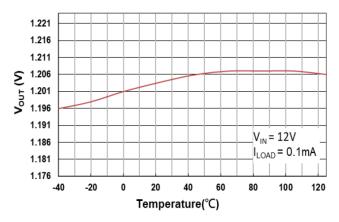


Fig. 1 Output Voltage vs. Temperature

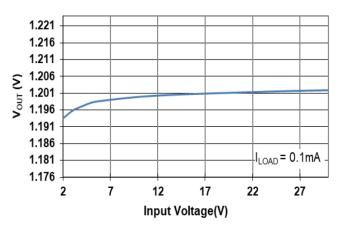


Fig. 2 Output Voltage vs. Input Voltage

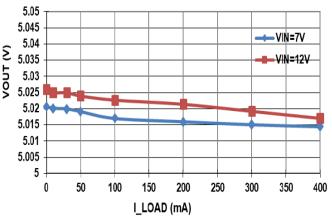


Fig. 3 Output Voltage vs. Load Current

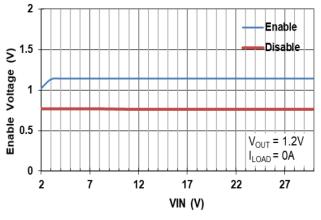


Fig. 4 Enable vs. Input Voltage

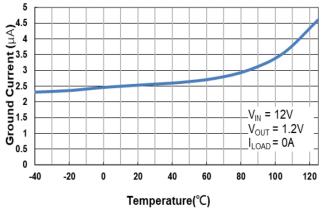


Fig. 5 Ground Current vs. Temperature

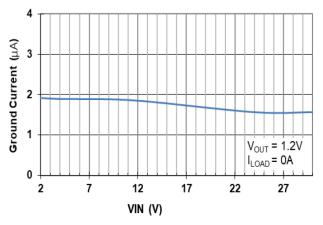


Fig. 6 Ground Current vs. Input Voltage

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

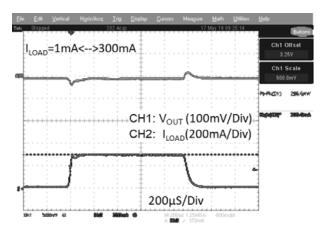


Fig. 7 Load Transient Response

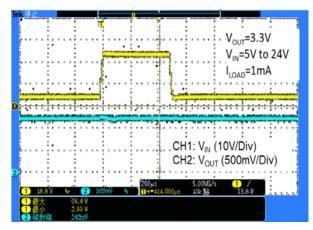


Fig. 8 Line Transient Response

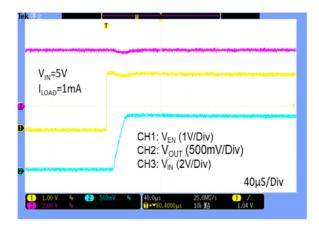


Fig. 9 V_{OUT} Turn on by EN

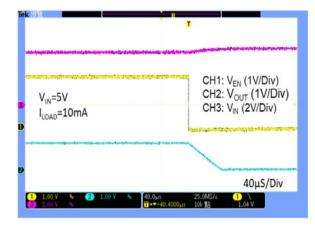


Fig. 10 V_{OUT} Turn off by EN

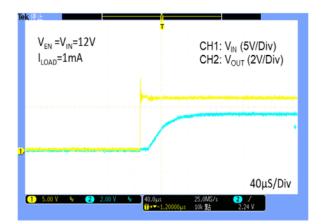
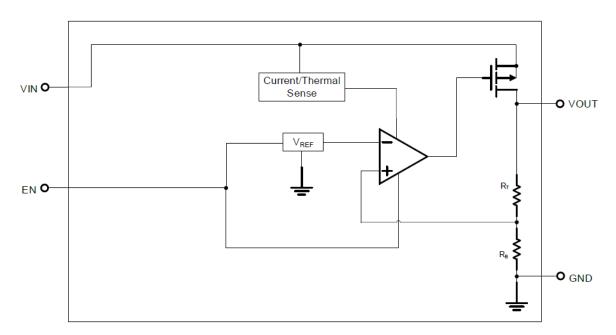



Fig. 11 V_{OUT} Turn on by V_{IN} Quick Power Up

BLOCK DIAGRAM

Functional Block Diagram of AIC1756B

■ PIN DESCRIPTION

VIN - Input of Supply Voltage.

GND - Ground.

VOUT - Output of the Regulator.EN - Enable Control Input.NC - No Internal Connection.

■ APPLICATION INFORMATION

INPUT-OUTPUT CAPACITOR REQUIREMENTS

The external input and output capacitors of AIC1756B series must be properly selected for stability and performance. Use a 1µF or larger input capacitor and place it close to the IC's VIN and GND pins. Any output capacitor meeting the minimum 1m Ω ESR (Equivalent Series Resistance) and effective capacitance between 1µF and 22µF requirement may be used. Place the output capacitor close to the IC's VOUT and GND pins. Increasing capacitance and decreasing ESR can improve the circuit's PSRR and line transient response.

CURRENT LIMIT

The AIC1756B series contain the current limiter of output power transistor, which monitors and controls the transistor, limiting the output current to 600mA (typical). The output can be shorted to ground indefinitely without damaging the part.

DROPOUT VOLTAGE

The AIC1756B series use a PMOS pass transistor to achieve low dropout. When $(V_{\text{IN}} - V_{\text{OUT}})$ is less than the dropout voltage (V_{DROP}) , the PMOS pass device is in the linear region of operation and the input-to-output resistance is the $R_{\text{DS(ON)}}$ of the PMOS pass element. V_{DROP} scales approximately with the output current because the PMOS device behaves as a resistor in dropout condition.

As any linear regulator, PSRR and transient response are degraded as $(V_{\text{IN}} - V_{\text{OUT}})$ approaches dropout condition.

OTP (OVER TEMPERATURE PROTECTION)

The over temperature protection function of AIC1756B series will turn off the P-MOSFET when the junction temperature exceeds 160°C (typ.). Once

the junction temperature cools down by approximately 15°C, the regulator will automatically resume operation.

THERMAL APPLICATION

For continuous operation, do not exceed the absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated as below:

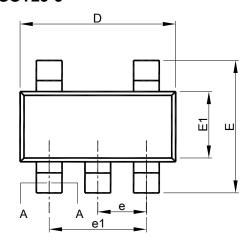
$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / (R\theta_{JA})$$

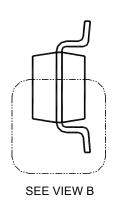
Where $T_{J(MAX)}$ is the maximum allowable junction temperature, and T_A is the ambient temperature suitable in application.

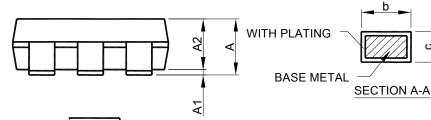
Power dissipation (P_D) is equal to the product of the output current and the voltage drop across the output pass element, as shown in the equation below:

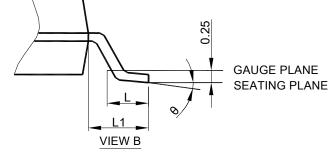
$$P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$$
.

LAYOUT CONSIDERATION

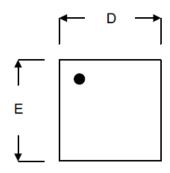

By placing input and output capacitors on the same side of the PCB as the LDO, and placing them as close as is practical to the package can achieve the best performance. The ground connections for input and output capacitors must be back to the AIC1756B ground pin using as wide and as short of a copper trace as is practical.

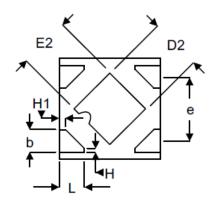

Connections using long trace lengths, narrow trace widths, and/or connections through via must be avoided. These add parasitic inductances and resistance that results in worse performance especially during transient conditions.

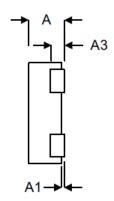


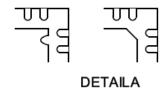

■ PHYSICAL DIMENSIONS

• SOT23-5


Note: 1. Refer to JEDEC MO-178AA.


- 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side.
- 3. Dimension "E1" does not include inter-lead flash or protrusions.
- 4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.


S Y	SOT23-5		
M B	MILLIMETERS		
O L	MIN.	MAX.	
Α	0.95	1.45	
A1	0.00	0.15	
A2	0.90	1.30	
b	0.30	0.50	
С	0.08	0.22	
D	2.80	3.00	
Е	2.60	3.00	
E1	1.50	1.70	
е	0.95 BSC		
e1	1.90 BSC		
L	0.30	0.60	
L1	0.60 REF		
θ	0°	8°	
		•	



DFN-4(1x1x0.37-0.65mm)

PIN #1 ID and Tie Bar Mark Options

Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Millimeters		
Symbol	Min.	Max.	
Α	0.300	0.400	
A1	0.000	0.050	
A3	0.117	0.162	
b	0.175	0.280	
D	0.900	1.100	
D2	0.430	0.550	
E	0.900	1.100	
E2	0.430	0.550	
е	0.650		
L	0.200	0.300	
Н	0.039		
H1	0.064		

Note:

Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.